

## Potenzialstudie für die Deponie Dörpen im Landkreis Emsland

(Kurztitel: Potentialstudie Dörpen)

Förderkennzeichen: 03K13980

Auftraggeber: Landkreis Emsland

Dezernat III - Bauen und Umwelt

Abfallwirtschaftsbetrieb Landkreis Emsland

Ordeniederung 1 49716 Meppen

Bearbeitet von: Eisenlohr Energie- & Umwelttechnik GmbH

Untere Beutau 25 73728 Esslingen

#### Gefördert durch:





aufgrund eines Beschlusses des Deutschen Bundestages



# ABFALLWIRTSCHAFTSBETRIEB LANDKREIS EMSLAND

## **DEPONIE DÖRPEN**

POTENTIALSTUDIE ZUR REDUZIERUNG VON TREIBHAUSGAS-EMISSIONEN BEI SIEDLUNGSABFALLDEPONIEN

## **POTENTIALSTUDIE**

**AKRONYM: DÖRPEN** 

FÖRDERKENNZEICHEN:

STAND: Nov. 2021

**AUFTRAGGEBER: LANDKREIS EMSLAND** 

AUFTRAGS-NR. 20-2



#### **ZUSAMMENFASSUNG**

Der Landkreis Emsland ist Genehmigungsinhaber und Betreiber der Deponie Dörpen. Sämtliche technische Einrichtungen befinden sich im Eigentum des Landkreises.

Der Landkreis Emsland betreibt seit 1979 die Deponie Dörpen in 26892 Dörpen. Die Deponie wurde mit Planfeststellungsbeschluss vom 15.10.1982 genehmigt. Auf einer Grundfläche von ca. 14,1 ha wurde in den Jahren ab 1979 bis 2005 ein Abfallvolumen von insgesamt ca. 1,8 Mio. m³ verbaut. In die Deponie Dörpen werden noch bis heute inerte Abfälle eingebaut. 41 vertikale und 8 horizontale Gasbrunnen sind im Einzelanschluss über fünf Gassammelstationen mit der Verdichteranlage verbunden.

Das Gasaufkommen ist seit Ende der Verfüllung mit einer Halbwertszeit von 8 – 10 Jahren rückläufig.

Auf der Deponie betreibt der Landkreis Emsland eine Deponieentgasungsanlage, bestehend aus einer Verdichterstation mit einem Drehkolbengebläse mit nachgeschalteter thermischer Nutzung (e-Flox).

Die Entgasungsanlage wurde im Jahr 1992 mit fünf Gassammelstellen errichtet. Die 2011 errichtete e-Flox-Anlage wurde auf eine Kapazität von min. 100  $\text{m}^3/\text{h}$  (380  $\text{KW}_{\text{th}}$ ) ausgelegt.

Nach den Ergebnissen der letzten Wirkungskontrolle der Eisenlohr Energie & Umwelttechnik GmbH (EEUT) vom Feb. 2021 zeigt die Deponie Dörpen mit der aktuellen Gasmenge von ca. 100 Nm³/h während des Regelbetriebs absinkende Gasqualitäten. Viele Gasfassungselemente können aufgrund des hohen Sauerstoffeintrags nicht abgesaugt werden.

Vor diesem Hintergrund hat der Landkreis Emsland die EEUT mit der Erarbeitung von Klimaschutzteilkonzepten zur Reduzierung von Treibhausgasemissionen aus Siedlungsabfalldeponien beauftragt. Der Umfang der Analyse wurde wie folgt festgelegt:

Bestandsaufnahme, Auswertung des Datenbestands, ergänzende Untersuchungen am Deponiekörper, Potentialanalyse, Maßnahmenkatalog und Controlling-Konzept.



#### Die Deponiegassituation

Die Deponie Dörpen befindet sich bereits in der sogenannten Lufteindringphase, d.h. die Halbwertszeiten der Gasentstehung nehmen immer weiter zu, die Gaserfassung zeigt bei geringem Unterdruck bereits einen geringen CH<sub>4</sub>-Anteil, die Gasbildung erfolgt mit abnehmendem CO<sub>2</sub>- Gehalt.

Insgesamt sind 49 Gasfassungselemente im Einzelanschluss auf der Deponie im Betrieb. Über 5 Gassammelstellen sind die Gasleitungen mit der Verdichteranlage verbunden.

#### Die Untersuchungen am Deponiekörper haben folgende Ergebnisse erbracht:

- Im Mittel wurden 80 m³/h Deponiegas mit ca. 17,0 Vol.-% CH<sub>4</sub>-Anteil erfasst und entsorgt.
- Die aktuelle Entwicklung bei der Gasentstehung zeigt, dass eine zunehmende Anzahl von Gasbrunnen geringere CH<sub>4</sub>-Gehalte aufweist.
- Der Absaugversuch zeigte, dass 17 Gasfassungselemente einen hohen Sauerstoffeintrag haben.
- An insgesamt 6 Gasleitungen bei der Gassammelstation III/2 liegen Leitungsdefekte vor.
- Nach den Ergebnissen der letzten FID-Messung vom Oktober 2020 (Abbildung 2) zeigte die Deponie Dörpen erhöhte Gasemissionen an den nicht abgedeckten Flächen.
- Der Deponiebereich oberhalb der Gassammelstation III/1 und III/2 kann während des Regelbetriebs nicht ordnungsgemäß abgesaugt werden.
- Der abgedichtete Teil der Deponie befindet sich in einem übersaugten Zustand.
- Die Gasbehandlungsanlage befindet sich in einem guten Zustand und entspricht den Anforderungen der zunehmenden Schwachgasbildung aufgrund des Alters der Deponie.

Das Entgasungssystem ist funktionsfähig, sollte jedoch an die aktuelle Situation angepasst werden. Folgende Verbesserungen sollten vorgenommen werden:

- Neue Gasregelstrecken zur Einstellung der geringeren Gasmengen.



#### Die Potentialanalyse zeigt folgende Ergebnisse:

Die Berechnung des oTS-Gehalts je Mg hat für das Jahr 2020 6,49 kg oTS/Mg Ablagerungsmenge ergeben.

Für das Jahr 2020 ergibt sich daraus eine Gasproduktion von minimal ca. 103 m $^3$ /h, im Mittel ca. 119 m $^3$ /h sowie maximal 133 m $^3$ /h (CH $_4$  = 40 Vol.- $^3$ ).

Im Jahr 2020 wurde die Entgasungsanlage im Mittel mit ca. 80 m³/h Deponiegas und einem CH<sub>4</sub> - Gehalt von ca. 16 Vol.-% betrieben. Dies entspricht einem Erfassungsgrad von nur ca. 22 %. (Bezogen auf 40 Vol.% Methan)

Aus dem Vergleich der bisherigen Gaserfassung zur Gasprognose wurden Emissionen von ca. 2.741.812 m³ berechnet.

Nach der Optimierung der Entgasung ergibt sich gegenüber der Bestandsanlage eine Emissionsminderung im Zeitraum 2021 bis 2042 um 1.388.704 m³ Methan, entsprechend 996 Mg bzw. 27.880 Mg CO<sub>2</sub>-Äquivalenz.

Die Methanerfassung kann somit um 180 % gesteigert werden.

#### Vorhabenbeschreibung

Für die Deponie Dörpen wurde folgender Ausbau des Entgasungssystems aufgezeigt:

- 1.) Verkleinerung der bestehenden Gasregelstrecken
- 2.) Umrüstung von 5 Gassammelstationen in PE-EL

Hierdurch kann eine Erhöhung der Gasfassung um ca. 180 % erreicht werden. Die Emissionen werden um 51 % vermindert.

Die Förderrichtlinien der NKI sehen vor eine In Situ-Stabilisierung der Deponie vorzunehmen.

Hierzu eignet sich das von der EEUT entwickelte DepoFit® Verfahren. Das Verfahren erlaubt mit einer ausgewählten Anlagengröße und Leistung die Behandlung des Deponiegases bis zum Abklingen der Gasbildung im Jahre 2042 vorzunehmen.

Die gesamten Investkosten wurden mit ca. 150.000 € ermittelt, hinzu kommen anteilige Planungskosten in Höhe von 7.500 € sowie die Umstellung auf In Situ-Stabilisierung und Monitoring in Höhe von 20.000 €. In der Summe 177.500 €. Diese sind mit 60 % förderfähig (106.500€).

Der Landkreis Emsland ist nicht Mehrwertsteuer abzugsberechtigt. Die Beträge erhöhen sich daher jeweils um 19 % MwSt. auf insgesamt 211.225 Euro



## **INHALTSVERZEICHNIS**

| Zusammenfassung                                           | 1   |
|-----------------------------------------------------------|-----|
| 1. Titel des Vorhabens                                    | 6   |
| 2. Angaben zum Projekt                                    | 6   |
| 2.1 Auftraggeber                                          | 6   |
| 2.2 Standort des Vorhabens                                | 6   |
| 2.3 Stammdaten der Deponie Dörpen                         | 7   |
| 2.4 Zulassungen – Genehmigungen                           | 7   |
| 3. Bestandsaufnahme                                       | 8   |
| 3.1 Standortgegebenheiten                                 | 8   |
| 3.2 Kurzbeschreibung der Deponieentgasungseinrichtungen   | 10  |
| 3.3 Optimierung der bestehenden technischen Einrichtungen | 11  |
| 3.4 Monitoring der Deponie Dörpen                         | 15  |
| 3.5 Bisherige Maßnahmen                                   | 15  |
| 3.6 Aufgabenstellung                                      | 15  |
| 4. Potentialanalyse                                       | .16 |
| 4.1 Zustandserfassung Deponiegaserfassungssystem          | 16  |
| 4.2 Tiefengestaffelte Untersuchung und Kamerabefahrung    |     |
| 4.3 Kamerabefahrung der Gassammelstation III/2            |     |
| 4.4 Beurteilung der Gesamtsituation                       |     |
| 4.5 Gasprognose - theoretisches Emissionspotenzial        |     |
| 4.6 Erfasste Deponiegasmengen – 2008 - 2020               |     |
| 4.7 Berechnung des oTS Gehalts                            |     |
| 4.8 Weitere Entwicklung der Gaserfassung                  |     |
| 5 Maßnahmenkatalog für Technische Umsetzung               | .34 |
| 5.1 Gasbrunnen und Gasregelstation                        |     |
| 5.2 In situ-Stabilisierung                                |     |
| 6 Kostenschätzung                                         | .39 |
| 7. Mögliche Emissionsminderung                            | .40 |
| 7.1 Methanbildung                                         | 40  |
| 7.2 Vergleich mit Bestandsanlage                          | 41  |
| 7.3 Vergleich nach Ertüchtigung des Entgasungssystems     | 42  |
| 8. Controlling-Konzept zur in situ Stabilisierung         | .43 |
| 8.1 Wirkungskontrollen und Funktionsprüfungen             | 43  |
| 8.2 Berichte zum Anlagenbetrieb                           | 43  |
| 9. Zeitplan                                               | .44 |



#### **ABBILDUNGSVERZEICHNIS**

| Abbildung 1: Luftbild Deponie Dörpen [Google Maps]                           | 8    |
|------------------------------------------------------------------------------|------|
| Abbildung 2: Ergebnisse der FID-Messung April 2020                           | . 14 |
| Abbildung 3 Auswertung Kamerabefahrung                                       | . 21 |
| Abbildung 4: Wirkungskontrolle der Entgasung Oktober 2020                    | . 24 |
| Abbildung 5: Wirkungskontrolle der Entgasung Februar 2021                    | . 25 |
| Abbildung 6 Absaugversuch der Entgasung Mai 2021                             | . 26 |
| Abbildung 7 Auswertung Kamerabefahrung                                       | . 27 |
| Abbildung 8: Gasprognose 1979 bis 2029                                       | . 29 |
| Abbildung 9: Erfasste Gasmengen im Vergleich zur Gasprognose (CH4 = 40 Vol%) | . 30 |
| Abbildung 10: Gasprognose und Behandlung bis 2043                            | . 33 |
| Abbildung 11: DepoFit® Verfahren                                             | . 37 |

#### **ANLAGENVERZEICHNIS**

- Anlage 1: Referenzliste der Eisenlohr Energie und Umwelttechnik
- Anlage 2: Stellungnahme der Genehmigungsbehörde zum geplanten Vorhaben
- Anlage 3: Tabelle der abgelagerten Abfälle
- Anlage 4: Ingenieurangebot der Eisenlohr Energie & Umwelttechnik GmbH
- Anlage 5: Messprotokolle Blatt Nr. 1-10
- Anlage 6: Tiefengestaffelte Untersuchung Deponie Dörpen
- Anlage 7: Absaugversuch
- Anlage 8: Auswertung Kamerabefahrung Gassammelstation III/2

## **A**BKÜRZUNGSVERZEICHNIS

NKI: Nationale Klimaschutzinitiative des Bundesumweltministeriums.

FOD: First Order Decay (FOD)

oTS/t: organische Trocken Substanz in kg je Tonne

IPCC: Intergovernmental Panel on Climate Change (IPCC) in Genf



## 1. TITEL DES VORHABENS

Technologien zur aeroben in-situ-Stabilisierung der Deponie Dörpen des Landkreises Emsland (Kommunalrichtlinie 2.12.4).

Hierzu die Potentialstudie zur Reduzierung von Treibhausgasemissionen aus Siedlungsabfalldeponien.

## 2. ANGABEN ZUM PROJEKT

## 2.1 AUFTRAGGEBER

Landkreis Emsland Ordeniederung 1 49716 Meppen

Ansprechpartner:

Herr Christopher Krämer (Abfallwirtschaftsbetrieb Landkreis Emsland)

Tel.: 05931 5996-156

E-Mail: christopher.kraemer@awb-emsland.de

Der Landkreis Emsland (Antragsteller) ist Genehmigungsinhaber und Betreiber der Deponie Dörpen.

#### 2.2 STANDORT DES VORHABENS

Deponie Dörpen

Deponieart: Siedlungsabfalldeponie (Deponie Klasse I u. II)

Bundesstraße 401 Nr. 100

26892 Dörpen



## 2.3 STAMMDATEN DER DEPONIE DÖRPEN

Der Landkreis Emsland betreibt seit 1979 die Deponie Dörpen in 26892 Dörpen. Die Deponie wurde mit Planfeststellungsbeschluss vom 15.10.1982 genehmigt. Auf einer Grundfläche von ca. 14,1 ha wurde in den Jahren ab 1979 bis 2005 ein Abfallvolumen von insgesamt ca. 1,8 mio. m³ verbaut. Die Deponie besteht aus insgesamt drei Bauabschnitten (BA). Die derzeitige Ablagerung der Abfälle erfolgt im BA III.

## 2.4 ZULASSUNGEN – GENEHMIGUNGEN

| Datum      | Bescheide                                                      |
|------------|----------------------------------------------------------------|
| 15.10.1982 | AbfG planfeststellungsbeschluss Gesamtdeponie                  |
| 28.01.1991 | AbfG Plangenehmigung Einrichtung Betrieb einer Entgasung       |
| 26.04.2000 | KrWG 2 Änderungsbescheid zur Plangenehmigung Entgasung BA III  |
| 10.10.2011 | BlmSchG Genehmigungsentscheidung zur Verwertung von Deponiegas |
| 08.08.2012 | BlmSchG Anzeige Standortänderung Verwertung von Deponiegas     |
| 15.05.2020 | KrWG Plangenehmigung Bauabschnitt IV                           |



## 3. BESTANDSAUFNAHME

## 3.1 STANDORTGEGEBENHEITEN

Deponie Dörpen Verfüllungszeitraum:

## Abfallmengen /-masse von 1979 bis 2004:

| Hausmüll gesamt:                | ca. 493.238 Mg   |
|---------------------------------|------------------|
| Sperimüll gesamt:               | ca. 180.516 Mg   |
| Gewerbeabfälle:                 | ca. 1.092.475 Mg |
| Inerte Stoffe:                  | ca. 175.316 Mg   |
| Berechnetes Hausmülläquivalent: | ca. 911.238 Mg   |
| Gesamte Ablagerungen:           | ca. 1.937.398 Mg |

(vgl. Anlage 3: Tabelle der abgelagerten Abfälle)



Abbildung 1: Luftbild Deponie Dörpen [Google Maps]

8



Gemäß Deponieverordnung (DepV) wird der dauerhafte Schutz des Bodens und des Grundwassers durch die Kombination aus geologischen Barrieren und einem Basisabdichtungssystem im Ablagerungsbereich gewährleistet.

Aufbau BA III (Basisabdichtung): Abfall/mineralische Entwässerungsschicht mit Drainrohren / Kunststoffdichtungsbahn d > 2,5 mm / 2 mineralische Abdichtungskomponenten / Geologische Barriere

Je nach Abschnitt sind unterschiedliche Abdichtungssysteme vorhanden, die immer mit dem jeweiligen Stand der Technik gebaut wurden.

Oberflächenabdichtung: Rekultivierungsschicht / Entwässerungsschicht / Kunststoffdichtungsbahn / Leckortungssystem / Ausgleichsschicht

Die Gesamtablagerungsfläche beträgt gemäß einer Vermessung 14,11 ha, davon sind rund 7,37 ha mit einer Oberflächenabdichtung versehen.

Das anfallende Sickerwasser wird separat erfasst und in einer geeigneten Kläranlage am Standort behandelt.

Die nachfolgende Tabelle zeigt den Verlauf der Sickerwassermenge und der rechnerischen Niederschlagsmenge. Der Anteil der Sickerwassermenge an der Niederschlagsmenge betrug 2019 47 %. Die Sickerwassermenge betrug 21.736 m<sup>3</sup>:

| Jahr   | Abflussbeiwert | Jahr | Abflussbeiwert | Jahr | Abflussbeiwert |
|--------|----------------|------|----------------|------|----------------|
| 1998   | 29%            | 2008 | 46%            | 2018 | 55%            |
| 1999   | 68%            | 2009 | 38%            | 2019 | 47%            |
| 2000   | 50%            | 2010 | 52%            |      |                |
| 2001   | 41%            | 2011 | 52%            |      |                |
| 2002   | 44%            | 2012 | 48%            |      |                |
| 2003   | 42%            | 2013 | 50%            |      |                |
| 2004   | 52%            | 2014 | 43%            |      |                |
| 2005   | 55%            | 2015 | 52%            |      |                |
| 2006   | 51%            | 2016 | 64%            |      |                |
| 2007   | 49%            | 2017 | 40%            |      |                |
| Durchs | chnitt         |      |                |      | 49%            |

Die am Standort gemessene Sickerwassermenge stammt allerdings nicht ausschließlich von der Deponie. Einige Lagerflächen entwässern ebenfalls in das, der Kläranlage vorgeschaltete, Pumpwerk. Eine mengenmäßige Trennung ist nicht möglich.

Da die Deponie noch nicht komplett mit einer Oberflächenabdichtung ausgestattet wurde, ist noch kein signifikanter Rückgang des Sickerwasseraufkommen erkennbar.



## 3.2 KURZBESCHREIBUNG DER DEPONIEENTGASUNGSEINRICHTUNGEN

Auf der Deponie Dörpen betreibt der Landkreis Emsland eine Deponieentgasungsanlage, bestehend aus einer Verdichteranlage mit nachgeschaltetem FLOX-Brenner.

| Inbetriebnahme der     Deponieentgasung | 1992                                                                           |
|-----------------------------------------|--------------------------------------------------------------------------------|
| Entgasungssystem:                       | "aktive Entgasung" – Absaugung des gefassten De-<br>poniegases mittels Gebläse |
| Gasfassungssysteme:                     | 41 vertikale, 8 horizontale Gasbrunnen                                         |
| • Anzahl:                               | 49 (gesamt)                                                                    |
| Gassammelsystem:                        | 5 Gassammelstationen                                                           |
| Verdichterstation                       | Drehkolbengebläse mit max. 100 m³/h                                            |
| Gasverwertung                           | E-Flox, DGV3-100                                                               |
|                                         | Gasdurchsatz: max. 100 m³/h                                                    |
|                                         | Methangehalt 6,0 – 40 Vol.%                                                    |
|                                         | Feuerungsleistung: 100 – 380 kW <sub>th</sub>                                  |

Auf der Deponie befinden sich 41 vertikale und 8 horizontale Gasbrunnen, diese sind im Einzelanschluss über fünf Gassammelstationen mit der Verdichteranlage verbunden. Ab der Verdichterstation wird das Deponiegas dann dem FLOX-Brenner zugeführt.

Von den fünf Gasregelstationen wurden alle in Betonbauweise errichtet. Sämtliche überirdische Rohrleitungen wurden in Stahl-Verzinkt ausgeführt. Sämtlich elektrisch leitende Bauteile sind geerdet. Die gesamte Deponiefläche kann damit flächenhaft entgast werden.



#### 3.3 OPTIMIERUNG DER BESTEHENDEN TECHNISCHEN EINRICHTUNGEN

#### 3.3.1 GASREGELSTATION

Die vorhandenen fünf Gasregelstationen befinden sich in einem guten Zustand. Alle Gebäude wurden als Beton-Fertiggebäude erstellt und beinhalten Gassammelbalken und Regelstrecken aus verzinkten Stahl-Regelstrecken.

Die Gasregelstrecken sind einheitlich in DN 50 ausgeführt. Mit der vorhandenen Nennweite von DN 50 ist nur eine sehr grobe Einstellung der Absaugmenge möglich, damit können kleine Gasmengen nicht eingestellt werden. Daher schlagen wir vor, die Messstrecken auf DN 25, passend zu den zurückgegangenen Gasmengen, umzurüsten. Außerdem sollten alle Gasleitungen (Regelstrecken und Hauptgassammelbalken) in elektrisch leitfähigem PE-EL ausgeführt werden.

#### 3.3.2 GASVERDICHTERANLAGE

Die Gasverdichteranlage ist in der E-Flox-Anlage enthalten. Das Deponiegas wird durch einen Drehkolbenverdichter mit einer Maximalleistung von 100 m³/h verdichtet und dem Flox-Brenner zugeleitet.

#### 3.3.3 GASVERWERTUNG

Die Gasverdichteranlage ist mit einer E-Flox Anlage der Fa. E-Flox ausgerüstet. Der Gasdurchsatz beträgt ca. 40 Nm $^3$ /h bis 100 Nm $^3$ /h. Die kleinste thermische Leistung dieser Anlage beträgt ca. 100 kW. Die E-Flox Anlage ist ausreichend dimensioniert, um im Arbeitsbereich > 6 Vol.-% CH $_4$  das schwächer werdende Deponiegas dauerhaft zu behandeln.



#### 3.3.4 SICKERWASSERREINIGUNGSANLAGE

Das auf der Deponie Dörpen anfallende Sickerwasser wird komplett in der Sickerwasserkläranlage Dörpen gereinigt. Die wasserrechtlichen Überwachungswerte werden eingehalten.

Die folgende Abbildung zeigt die Monats- und Jahresmittelwerte der Analysewerte für die Sickerwasserkläranlage. Die Proben werden aus dem Zulauf der Kläranlage entnommen und bestehen aus sämtlichen Betriebsabwässern des Standortes inkl. Lagerflächen und Biomassevergärungsanlage. Es wurden keine Auffälligkeiten bei den Analysewerten festgestellt.

| Rohsickerwasser Monats-/ Jahresmittelwerte |                     |       |         |       |        |         |       |       |       |       |       |       |       |         |
|--------------------------------------------|---------------------|-------|---------|-------|--------|---------|-------|-------|-------|-------|-------|-------|-------|---------|
| Tronoisian mass                            |                     |       |         |       |        |         |       |       |       |       |       |       |       |         |
|                                            |                     | Eigen | kontrol | len   |        |         |       |       |       |       |       |       |       |         |
|                                            |                     |       |         |       |        |         |       | 2020  |       |       |       |       |       | 2020    |
| Monat/ Jahr                                |                     | Jan   | Feb     | Mrz   | Apr    | Mai     | Jun   | Jul   | Aug   | Sep   | Okt   | Nov   | Dez   |         |
| pH-Wert                                    |                     | 8,2   | 8,2     | 7,9   | 8,0    | 8,0     | 8,0   | 8,0   | 8,0   | 8,1   | 8,1   | 8,1   | 8,1   | 8,1     |
| CSB                                        | mg/l O <sub>2</sub> | 1.033 | 1.018   | 792   | 842    | 976     | 1.035 | 1.021 | 1.058 | 1.088 | 1.149 | 1.053 | 1.127 | 1.016   |
| BSB <sub>5</sub>                           | mg/l O <sub>2</sub> | 62    | 88      | 84    | 62     | 73      | 68    | 72    | 81    | 114   | 175   | 136   | 123   | 95      |
| Nitritstickstoff                           | mg/l N              | 0,6   | 0,5     | 0,5   | 0,6    | 0,4     | 0,4   | 0,4   | 0,5   | 0,3   | 0,3   | 0,3   | 0,4   | 0,4     |
| Nitratstickstoff                           | mg/l N              | 5,7   | 7,0     | 33,0  | 25,7   | 5,6     | 6,7   | 6,2   | 7,4   | 6,7   | 6,4   | 6,6   | 7,0   | 10,3    |
| Ammoniumstickstoff                         | mg/l N              | 240   | 252     | 236   | 283    | 360     | 365   | 358   | 344   | 301   | 239   | 218   | 253   | 287     |
| Phosphat-Phosphor                          | mg/l P              | 7,70  | 7,00    | 5,20  | 5,70   | 7,00    | 7,20  | 7,50  | 7,40  | 9,60  | 9,60  | 8,90  | 8,30  | 7,59    |
|                                            |                     |       |         |       |        |         |       |       |       |       |       |       |       |         |
|                                            |                     |       |         |       |        |         |       |       |       |       |       |       |       |         |
|                                            |                     |       |         |       | Jahres | smittel | werte |       |       |       |       |       |       |         |
| Jahr                                       |                     | 2008  | 2009    | 2010  | 2011   | 2012    | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  | 2019  | 2020    |
| pH-Wert                                    |                     | 8,1   | 8,1     | 8,1   | 8,1    | 8,1     | 8,2   | 8,1   | 8,1   | 8,0   | 8,0   | 8,1   | 8,1   | 8,1     |
| CSB                                        | mg/l O <sub>2</sub> | 1.197 | 1.182   | 1.182 | 1.163  | 1.068   | 1.323 | 1.227 | 1.085 | 1.080 | 997   | 1.036 | 1.029 | 1.016,0 |
| BSB <sub>5</sub>                           | mg/l O <sub>2</sub> | 58    | 69      | 71    | 57     | 66      | 207   | 188   | 113   | 87    | 83    | 61    | 81    | 94,8    |
| Nitritstickstoff                           | mg/l N              | 1,8   | 1,1     | 0,8   | 0,9    | 1,1     | 0,4   | 1,0   | 0,5   | 0,5   | 2,2   | 1,3   | 1,7   | 0,4     |
| Nitratstickstoff                           | mg/l N              | 25,3  | 27,8    | 16,2  | 14,3   | 14,9    | 11,4  | 14,8  | 8,0   | 9,2   | 12,9  | 9,5   | 14,5  | 10,3    |
| Ammoniumstickstoff                         | mg/l N              | 449   | 455     | 477   | 449    | 409     | 395   | 367   | 388   | 367   | 355   | 328   | 310   | 287,4   |
| Phosphat-Phosphor                          | mg/l P              | 5,59  | 4,99    | 5,95  | 6,47   | 5,82    | 8,04  | 7,38  | 7,36  | 7,78  | 8,65  | 7,12  | 6,86  | 7,6     |



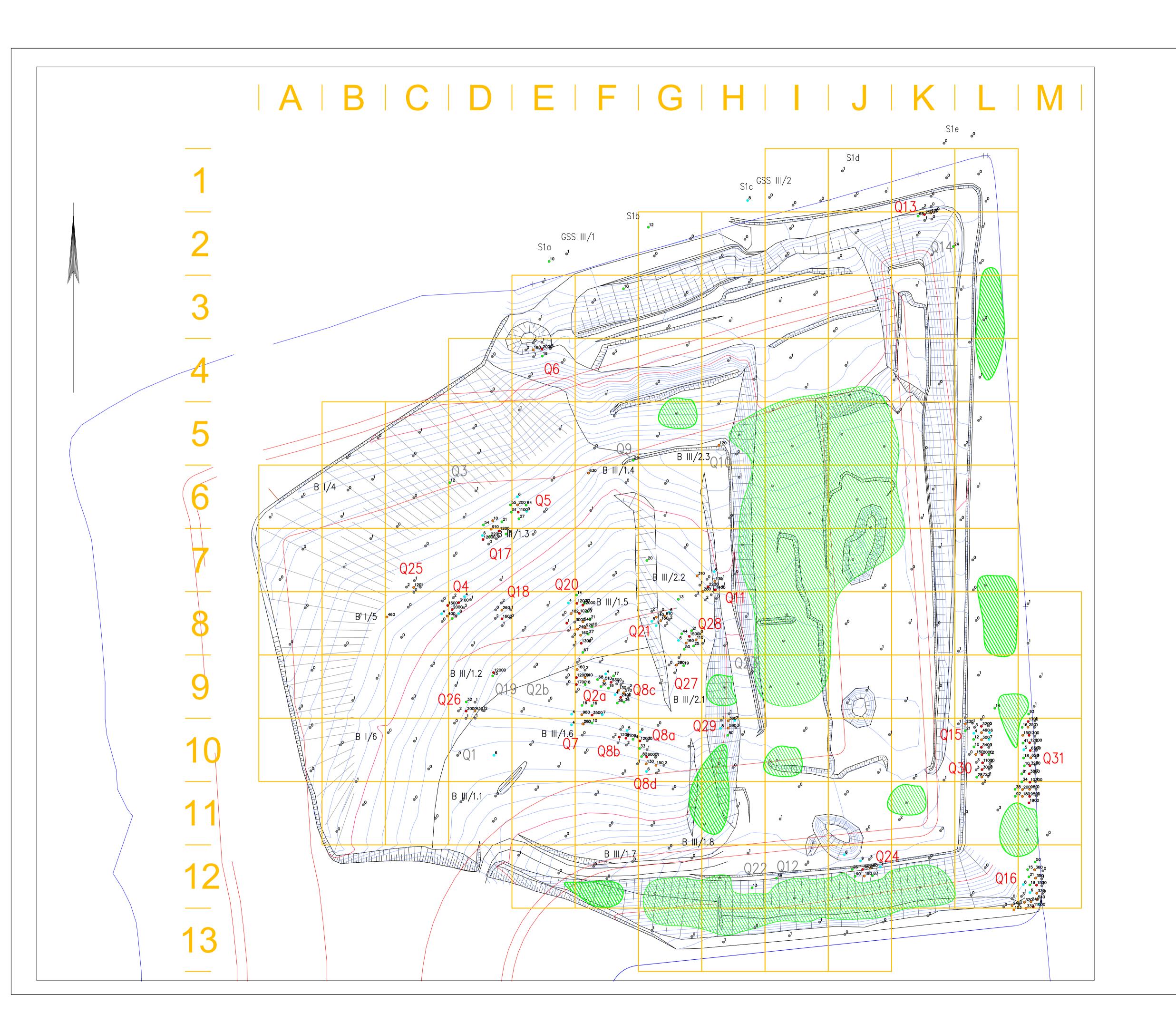
#### 3.3.5 DEPONIEGASSITUATION

Die Deponie Dörpen befindet sich bereits in der sogenannten Lufteindringphase. Das heißt, die Halbwertszeiten der Gasentstehung nehmen immer weiter zu, die Gaserfassung zeigt bei geringem Unterdruck bereits einen geringer werdenden CH<sub>4</sub>-Anteil, die Gasbildung erfolgt mit abnehmendem CO<sub>2</sub>- Gehalt.

Auf der Deponie Dörpen sind 7,37 ha bereits komplett mit einer Endoberflächenabdichtung ausgestattet.

Nach den Ergebnissen der letzten FID-Messung, auf dem nicht oberflächenabgedichteten Teil der Deponie vom Oktober 2020 (Abbildung 2), zeigte die Deponie Dörpen mit der erfassten Gasmenge von im Mittel 100 m³/h stark erhöhte Gasemissionen an den Flächen.

Die Anzahl der Messpunkte, an denen Methankonzentrationen über 100 ppm gemessen wurden, erhöhte sich gegenüber dem Vorjahr von 55, um weitere 76 %, auf 97 MP. Die Austrittsstellen befinden sich überwiegend im Plateaubereich des abgedeckten Teils des untersuchten Gebietes oberhalb des Gassammelstation III/1. Stark zugenommen haben darüber hinaus die Gasaustritte im südlichen Teil der östlichen Böschung, weitere Austrittsstellen wurden an der nördlichen und südlichen Böschung festgestellt.


Eine überschlägige Betrachtung der Emissionen ergab eine emittierte Deponiegasmenge von ca. 50 m³/h am nicht oberflächengedichteten Teil der Zentraldeponie Dörpen.

Die Einstellung der Entgasung sollte optimiert werden, so dass die Gassammelstationen III/1 und III/2 stärker abgesaugt werden. Hierzu sind kleinere Regelstrecken notwendig.

#### 3.3.6 SETZUNGEN

Die Setzungen im Bereich der bereits mit einem Oberflächenabdichtungssystem versehenen Abschnitte betragen 2020 im Vergleich zum Vorjahr 0,1 bis 1,4 cm, im Vergleich zur Vermessung im Jahr 2013 bis 11,2 cm. Setzungen in dieser Größenordnung werden für das Oberflächenabdichtungssystem als unkritisch beurteilt.

In den noch nicht abgedichteten Bereichen betragen die Setzungen 2020 im Vergleich zum Vorjahr 1,7 bis 4,4 cm und im Vergleich zur Vermessung im Jahr 2013 6,0 bis 16,9 cm.



## Legende

Gebiet nicht begehbar

- ⊗ Messpunkt nicht begehbar
- 0 3 ppm
- 4 < 10 ppm
- 10 < 100 ppm
- 100 < 1000 ppm
- >= 1000 ppm

  Brunnen, Schächte etc: Konzentration am Rand / innen Farbcodierung wie oben

| Rohauswertung Aufbereitung | Zeichen<br>SK<br>SK    | S                  |                                                             |                                             |  |  |  |  |
|----------------------------|------------------------|--------------------|-------------------------------------------------------------|---------------------------------------------|--|--|--|--|
| geprüft                    | JSK                    | 01/2021<br>01/2021 | stapelWERK - Gebäude C<br>22145 Hamburg<br>040/523 886 28-0 | ODOCON<br>Emissionismanglement und Analytik |  |  |  |  |
| Projekt                    | info@odocon.de<br>jekt |                    |                                                             |                                             |  |  |  |  |
| Dep                        | 1 von 1                |                    |                                                             |                                             |  |  |  |  |
| Maßnahme                   |                        | Bericht Nr.        |                                                             |                                             |  |  |  |  |
| FID-<br>26./2              | 2021/02                |                    |                                                             |                                             |  |  |  |  |
| Planinhalt:                | Blattformat  A 1       |                    |                                                             |                                             |  |  |  |  |



#### 3.4 MONITORING DER DEPONIE DÖRPEN

Die Einstellung und der Betrieb der Deponieentgasungsanlage erfolgen wöchentlich. Die FID-Messungen werden 1 x jährlich vorgenommen.

Die technischen Einrichtungen der Entgasungsanlage werden regelmäßig geprüft und gewartet. Das Sickerwassersammelsystem wird gereinigt und mit Kamera befahren. Untersuchungen zur Bewertung der Leistungsfähigkeit der Gasbrunnen liegen vor. Die Hauptsetzungen der Deponie sind abgeklungen.

Das vorliegende Monitoring-Programm muss hinsichtlich der Überwachung der Entgasungsanlage den Anforderungen der NKI<sup>1</sup> angepasst werden.

#### 3.5 BISHERIGE MAGNAHMEN

Im Rahmen der Potentialanalyse wurde das Entgasungssystem komplett vermessen und eingestellt. Die Gasmenge konnte hierdurch bereits gesteigert werden. Außerdem wurde ein Absaugversuch mit einem mobilen Gebläse, sowie eine tiefengestaffelte Untersuchung der einzelnen Gasbrunnen durchgeführt. Das gesamte System wurde im Rahmen einer Konzeption hinsichtlich einer zukunftsfähigen, sicheren und wirtschaftlichen Betriebsweise untersucht.

#### 3.6 AUFGABENSTELLUNG

Anlass für die vorliegende Potentialstudie war, zugeschnitten auf die standortspezifischen Gegebenheiten, technisch und wirtschaftlich machbare Wege zur Minimierung klimaschädlicher Methanemissionen aufzuzeigen. Dies umfasst in einem ersten Schritt die Analyse bestehender Einrichtungen und deren Potential zur Verbesserung der Deponiegaserfassung. Zudem ist eine Ermittlung des Deponiegasbildungspotentials nach dem Modell der IPCC Guidelines zur Bewertung des Emissionspotentials enthalten.

Nach Abschluss der thermischen Schwachgasbehandlung soll die Minimierung klimarelevanter Methanemissionen durch eine Aerobisierung (Umstellung auf aerobe Verhältnisse) erfolgen. Das in der Folge oxidativer Abbauprozesse anstelle von Methan entstehende Kohlenstoffdioxid hat ein ca. 28-fach geringeres Treibhauspotential wie Methan und ist zudem, da überwiegend biogenen Ursprungs, als weitgehend klimaneutral einzustufen.

Eine durch kontinuierliche Entgasung erlangte entsprechende Belüftung der Deponie (-abschnitte) hat zugleich eine Beschleunigung der Umsetzungsprozesse zur Folge und trägt zur In Situ-Stabilisierung bei.

\_

<sup>&</sup>lt;sup>1</sup> NKI: Nationale Klimaschutzinitiative des Bundesumweltministeriums



#### 4. POTENTIALANALYSE

### 4.1 ZUSTANDSERFASSUNG DEPONIEGASERFASSUNGSSYSTEM

#### ERGEBNISSE DER ÜBERPRÜFUNG DES ENTGASUNGSSYSTEMS vom 13.10.2020

Die Messergebnisse der Überprüfung des Entgasungssystems sind in Anhang 5- Messprotokolle Blatt Nr. 1 - 8 dokumentiert.

Die Auswertung der Messdaten vom 13.10.2020 ergibt folgende Zusammenhänge:

#### • Erfasste Gesamtgasmenge

Am 13.10.2020 wurde die E-Flox mit ca. 100 Nm³/h betrieben. Die Handmessung ergab ca. 89,2 Nm³/h.

#### Gasqualität an Analyseanzeige:

Vor/nach der Überprüfung:

17,0 / 19,0 Vol.-% CH<sub>4</sub> 1,4 / 1,2 Vol.-% O<sub>2</sub>

#### Verteilung der erfassten Gesamtgasmengen

| Gas s ammels telle | Gas menge Nm²/h | in % Gesamt |
|--------------------|-----------------|-------------|
| GS I               | 7,8             | 8,7%        |
| GS II2             | 21,3            | 23,9%       |
| GS II1             | 37,6            | 42,2%       |
| GS III1            | 22,5            | 25,2%       |
| GS III2            | 0               | 0,0%        |
| Summe              | 89,2            | 100,0%      |

Der Verteilung zugrunde gelegt wurde die aus der Handmessung berechnete Gasmenge von ca. 89,2 Nm³/h.

#### • Angeschlossene Gasfassungselemente

Das Gasfassungssystem besteht derzeit aus 49 Gasfassungselementen (GFE), davon angeschlossen sind 49.

#### Defekte Gasfassungselemente

An folgendem Gasbrunnen wurde hoher Lufteintrag festgestellt (insgesamt 21): 1/4, 1/5, 1/6, 1/7, 11/1.1, 11.10, 11/2.2, 11/2.3, 112.4, 112.6, 112.7, 112.10, 111/1.1, 111/1.2, 111/1.3, 111/1.4, 111/1.5, 111/1.7, 111/2.8, 111/2.9. An diesen GFE wird ein Defekt vermutet. Diese Gasfassungselemente werden aktuell nicht abgesaugt.

#### • Abgesaugte Gasfassungselemente (GFE)

28 der 49 angeschlossenen GFE wurden zum Zeitpunkt der Überprüfung abgesaugt.



#### Gasfassungselemente über 50 % CH<sub>4</sub> -Gehalt

2 der 28 abgesaugten GFE hatten einen CH<sub>4</sub>-Gehalt über 50 Vol.-%. Diese Gasfassungselemente können noch stärker abgesaugt werden.

#### • Eingeschränkt wirksame Gasfassungselemente

Von den abgesaugten Gasbrunnen weisen 7 keine messbaren Gasmengen auf: III/1.6, III/2.1, III/2.2, III/2.4, III/2.5, III/2.6, III/2.7 (Gasleitungsdefekt vermutet).

#### Optimal abgesaugte Gasfassungselemente

19 der 28 abgesaugten GFE hatten einen CH<sub>4</sub>-Gehalt zwischen 20 und 40 Vol.-%.

#### • Übersaugte Gasfassungselemente

An 4 der 28 abgesaugten Gasbrunnen wurde eine Methankonzentration unter 20 Vol.% gemessen.

Insbesondere die Gasmenge am Gasbrunnen III/1.8 mit 16 m³/h bei einem CH<sub>4</sub>-Gehalt von 8,0 Vol.-% CH<sub>4</sub> war viel zu groß.

#### Zusammenfassung der Funktionsprüfungen

Auf der Zentraldeponie Dörpen befinden sich insgesamt 49 GFE, davon angeschlossen an die Entgasung sind 49 GFE.

29 Gasfassungselemente sind ordnungsgemäß in Betrieb. 21 Gasfassungselemente wurden als defekt eingestuft und waren nicht in Betrieb.

7 Gasbrunnen wiesen eine eingeschränkte Funktion auf.

#### ERGEBNISSE DER ÜBERPRÜFUNG DES ENTGASUNGSSYSTEMS vom 24.02.2021

Die Messergebnisse der Überprüfung des Entgasungssystems sind in Anhang 5 - Messprotokolle Blatt Nr. 1 - 8 dokumentiert.

Die Auswertung der Messdaten vom 24.02.2021 ergibt folgende Zusammenhänge:

#### Erfasste Gesamtgasmenge

Am 24.02.2021 wurde die E-Flox mit ca. 100 Nm³/h betrieben. Die Handmessung ergab ca. 67,6 Nm³/h.

#### • Gasqualität an Analyseanzeige:

Vor/nach der Überprüfung:

16,0 / 16,0 Vol.-% CH<sub>4</sub> 0,6 / 0,4 Vol.-% O<sub>2</sub>



#### Verteilung der erfassten Gesamtgasmengen

| Gassammelstelle | Gasmenge Nm³/h | in % Gesamt |
|-----------------|----------------|-------------|
| GS I            | 14,5           | 21,4%       |
| GS II2          | 16,2           | 24,0%       |
| GS   1          | 18,5           | 27,4%       |
| GS <b>Ⅲ</b> 1   | 18,4           | 27,2%       |
| GS 1112         | 0              | 0,0%        |
| Summe           | 67,6           | 100,0%      |

Der Verteilung zugrunde gelegt wurde die, aus der Handmessung berechnete, Gasmenge von ca. 67,6 Nm<sup>3</sup>/h.

#### Defekte GFE

An folgendem GFE wurde ein hoher Lufteintrag festgestellt (insgesamt 24): 1/3, 1/4, 1/5, 1/6, 11/1.1, 11/1.4, 11/1.9, 111.10, 11/2.2, 11/2.3, 11/2.4, 11/2.6, 11/2.7, 11/2.9, 11/2.10, 11/2.12 111/1.1, 111/1.2, 111/1.3, 111/1.4, 111/1.6, 111/1.7, 111/1.8. An diesen GFE wird ein Defekt vermutet. Diese Gasfassungselemente werden aktuell nicht abgesaugt.

Des Weiteren werden sämtliche Gasleitungen der Gassammelstation III/2 als defekt eingestuft, da dort keine Gasmenge messbar ist, obwohl Unterdruck an der Station anliegt. (9 GFE defekt)

#### Abgesaugte GFE

16 der 49 angeschlossenen GFE wurden zum Zeitpunkt der Überprüfung abgesaugt.

#### • GFE über 50 % CH4 -Gehalt

1 der 16 abgesaugten GFE hatten einen CH<sub>4</sub>-Gehalt über 50 Vol.-%. Dieses Gasfassungselement kann noch stärker abgesaugt werden.

#### Optimal abgesaugte GFE

2 der 16 abgesaugten GFE hatten einen  $CH_4$ -Gehalt zwischen 20 und 40 Vol.-%.

#### Übersaugte GFE

An 13 der 16 abgesaugten GFE wurde eine Methankonzentration unter 20 Vol.-% gemessen.

#### • Zusammenfassung der Funktionsprüfungen

Auf der Zentraldeponie Dörpen befinden sich insgesamt 49 GFE, davon angeschlossen an die Entgasung sind 49 GFE.

Davon sind 16 GFE ordnungsgemäß in Betrieb. 33 GFE wurden als defekt eingestuft und waren nicht in Betrieb.



#### ERGEBNISSE DER ÜBERPRÜFUNG DES ABSAUGVERSUCHES vom 27.05.2021

Aufgrund des hohen Sauerstoffeintrags sowie der eingeschränkten Funktionalität der Gassammelstation III/2 wurde am 27.05.2021 ein Absaugversuch des gesamten Entgasungssystems mit einem mobilen Gebläse durchgeführt. Jede Gassammelstation wurde mit einem Volumenstrom von ca. 60 – 90 m³/h für eine Stunde besaugt. Während des Absaugversuch wurden die Gasqualitäten an den Regelstrecken und an den Gasbrunnenköpfen gemessen. Die Messergebnisse sind in Anlage 7 enthalten.

Der Absaugversuch zeigte folgende Ergebnisse:

- Es konnte bestätigt werden, dass an insgesamt 6 Gasleitungen bei der Gassammelstation III/2 ein Leitungsdefekt vorliegt, da trotz hohem Unterdruck (-100 mbar) vom Gebläse, kein Volumenstrom messbar war.
- Die Leitung des Gasbrunnens III/2.2 ist vermutlich falsch angeschlossen, da sich die Gaszusammensetzung zwischen Gasbrunnenkopf und Gassammelstation deutlich unterscheidet.
- Weitere Leitungsdefekte konnten ausgeschlossenen werden.
- Der Absaugversuch und die tiefengestaffelte Untersuchung der Gasbrunnen weisen auf einen Lufteintrag über die Basis hin. Bei einigen Gasbrunnen konnte beobachtet werden, dass sich der Sauerstoffeintrag während des Absaugversuchs sogar langsam erhöhte.
- 17 Gasfassungselemente (GFE) weisen einen zu hohen Sauerstoffgehalt auf und können nicht im Regelbetrieb abgesaugt werden.
- Die Deponie befindet sich in einem übersaugten Zustand. Das heißt, es findet eigentlich bereits eine in Situ-Stabilisierung statt.
- Die Hauptgassammelleitungen in den Stationen und die Leitungen zwischen den Stationen sind alle funktionsfähig.



#### 4.2 TIEFENGESTAFFELTE UNTERSUCHUNG UND KAMERABEFAHRUNG

Bei der tiefengestaffelten Untersuchung wurde an allen relevanten Gasbrunnenköpfen eine zeitlich begrenzte Entnahme von Deponiegas mit Messung der Gasqualität über Zeit und Tiefe durchgeführt. Das Ziel dieser Untersuchung ist die Feststellung der Gaszusammensetzung über die Gesamttiefe. Um sicherzustellen, dass keine Defekte am Zentralrohr der Gasbrunnen vorliegen, wurden diese zuerst mit einer Kamera befahren.

Die Untersuchung ergab, dass einige Gasbrunnen bereits in der Tiefe einen hohen Sauerstoffgehalt aufweisen. An allen betriebenen Gasbrunnen sinkt zudem die Gasqualität mit zunehmender Tiefe. An den Gasbrunnen III/1.4, II/2.7 und II/2.12 und III/1.1 wurde ein Defekt am Zentralrohr gefunden. Folgende Gasbrunnen weisen einen erhöhten Wasserstand auf: III/1.3, III/1.4, III/1.7, III/2.2 und III/2.3.

Alle weiteren Gasbrunnen auf der Deponie Dörpen befinden sind in einem guten Zustand und sind einsatzbereit. Die Lage und Anzahl der Gasbrunnen lassen eine flächenhafte Entgasung zu.

Die Messergebnisse sind in Anlage 6 zusammengefasst.



| Brunnen    | Höhe am<br>Kopf<br>m NN | verm.<br>Basis | Auffüll-<br>höhe | Haltung<br>(m)<br>Kamera | Wasser-<br>stand bei<br>[m] | Wirksamkeit<br>in %<br>Auffüllhöhe | Befund / Funktion    |
|------------|-------------------------|----------------|------------------|--------------------------|-----------------------------|------------------------------------|----------------------|
| GB I/1     | 28,5                    | 8,0            | 20,5             | 9,1                      |                             | 44%                                | trocken              |
| GB I/2     | 26,5                    | 8,0            | 18,5             |                          | 11,7                        | 63%                                | Wasser               |
| GB I/3     | 24,0                    | 8,0            | 16,0             | 7,6                      |                             | 48%                                | trocken              |
| GB I/4     | 23,0                    | 8,0            | 15,0             |                          | 10,0                        | 67%                                | Wasser               |
| GB I/6     | 31,4                    | 8,0            | 23,4             | 18,4                     |                             | 79%                                | trocken              |
| GB I/7     | 33,6                    | 8,5            | 25,1             |                          | 20,7                        | 82%                                | Wasser               |
| GB II/1.2  | 26,5                    | 8,5            | 18,0             | 11,4                     |                             | 63%                                | trocken              |
| GB II/1.3  | 27,0                    | 8,5            | 18,5             | 13,2                     |                             | 71%                                | trocken              |
| GB II/1.4  | 32,6                    | 8,5            | 24,1             | 8,6                      |                             | 36%                                | Kollaps Zentrahlrohr |
| GB II/1.5  | 34,0                    | 8,5            | 25,5             | 22,2                     |                             | 87%                                | trocken              |
| GB II/1.6  | 35,6                    | 8,5            | 27,1             |                          | 23,9                        | 88%                                | Wasser               |
| GB II/1.7  | 33,0                    | 8,5            | 24,5             |                          | 23,4                        | 96%                                | Wasser               |
| GB II/1.8  | 32,0                    | 8,5            | 23,5             |                          | 21,7                        | 92%                                | Wasser               |
| GB II/1.9  | 31,0                    | 8,5            | 22,5             |                          | 20,5                        | 91%                                | Wasser               |
| GB II/2.2  | 29,2                    | 8,5            | 20,7             | 13,7                     |                             | 66%                                | trocken              |
| GB II/2.3  | 29,1                    | 8,1            | 21,0             |                          | 15,0                        | 71%                                | Wasser               |
| GB II/2.4  | 25,6                    | 8,1            | 17,5             |                          | 15,9                        | 91%                                | Wasser               |
| GB II/2.6  | 31,4                    | 8,1            | 23,3             | 19,9                     |                             | 85%                                | trocken              |
| GB II/2.7  | 32,5                    | 8,1            | 24,4             | 11,0                     |                             | 45%                                | Kollaps Zentrahlrohr |
| GB II/2.8  | 26,9                    | 8,1            | 18,8             |                          | 15,6                        | 83%                                | Wasser               |
| GB II/2.9  | 30,2                    | 8,1            | 22,1             |                          | 21,4                        | 97%                                | Wasser               |
| GB II/2.10 | 29,2                    | 8,1            | 21,1             |                          | 20,0                        | 95%                                | Wasser               |
| GB II/2.11 | 28,2                    | 8,1            | 20,1             |                          | 17,5                        | 87%                                | Wasser               |
| GB II/2.12 | 23,9                    | 8,1            | 15,8             | 3,0                      |                             | 19%                                | Kollaps Zentrahlrohr |
| GB III/1.1 | 32,0                    | 20,5           | 11,5             | 4,7                      |                             | 41%                                | Kollaps Zentrahlrohr |
| GB III/1.2 | 34,6                    | 17,9           | 16,7             | 12,8                     |                             | 77%                                | trocken              |
| GB III/1.3 | 28,4                    | 17,8           | 10,6             |                          | 7,4                         | 70%                                | Wasser               |
| GB III/1.4 | 28,9                    | 11,1           | 17,8             |                          | 8,2                         | 46%                                | Wasser               |
| GB III/1.5 | 35,0                    | 11,8           | 23,2             |                          | 17,5                        | 75%                                | Wasser               |
| GB III/1.6 | 34,6                    | 12,5           | 22,1             |                          | 15,0                        | 68%                                | Wasser               |
| GB III/1.7 | 27,6                    | 14,0           | 13,6             |                          | 7,4                         | 54%                                | Wasser               |
| GB III/2.2 | 32,7                    | 11,9           | 20,8             |                          | 11,7                        | 56%                                | Wasser               |
| GB III/2.3 | 28,1                    | 11,1           | 17,0             |                          | 7,0                         | 41%                                | Wasser               |

Abbildung 3 Auswertung Kamerabefahrung



## 4.3 KAMERABEFAHRUNG DER GASSAMMELSTATION III/2

Da 6 Gasleitungen in der Gassammelstation III/2 Leitungsdefekte haben, wurden die ersten 40 m Gasleitung hinter der Station mit einer Kamera befahren, um ggf. einen Defekt direkt unterhalb der angelegten Deponieauffahrt zu finden.

Die Kamerabefahrung der Gassammelstation III/2 auf der Deponie Dörpen wurde am 15.07.2021 erfolgreich durchgeführt:

- Die Gasleitungen weisen keine Quetschung/Defekt hinter der Gassammelstation unterhalb der Straßenauffahrt auf.
- Die Gasleitung III/2.1 hat bei ca. 45 m einen leichten Wassersack, der die Funktion der Gasfassung jedoch nicht beeinflusst.
- Die Gasleitung III/2.2 hat bei ca. 45 m einen Wassersack, der die Funktion der Gasfassung jedoch nicht beeinflusst.
- Die Gasleitung III/2.3 hat bei ca. 45,5 m einen Wassersack, der höchstwahrscheinlich für die Funktionseinschränkung des Gasfassungssystems verantwortlich ist.
- Bei den Gasleitungen III/2.4, III/2.5, III/2.6, III/2.7, III/2.8D und III/2.9D wurde kein Defekt oder Wassersack gefunden.

Die Kameraauswertung ist in Anlage 8 zusammengefasst.



#### 4.4 BEURTEILUNG DER GESAMTSITUATION

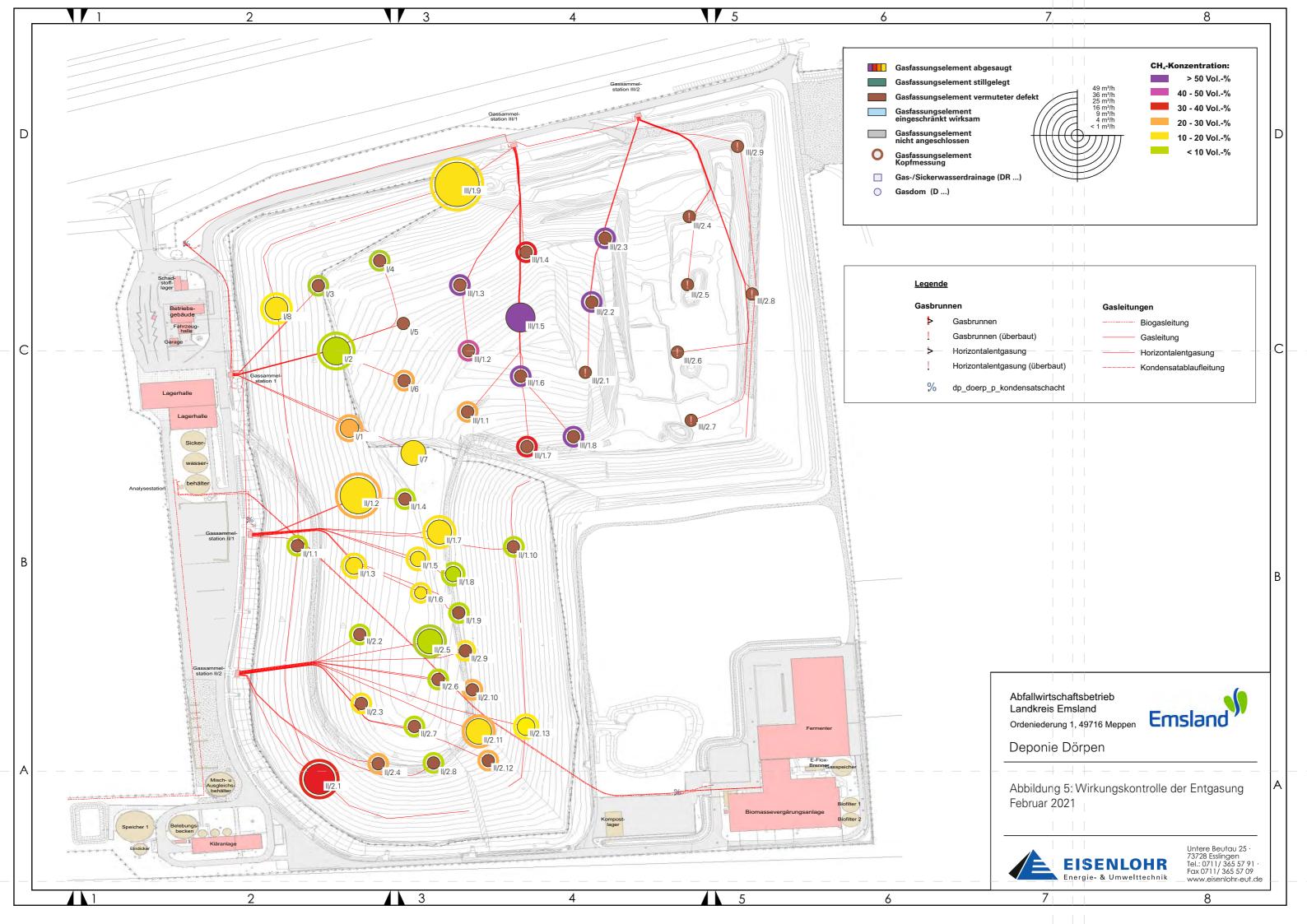
Abbildung 4, Abbildung 5 und Abbildung 6 auf den folgenden Seiten zeigen die grafische Darstellung der Gaserfassung auf der Deponie Dörpen. Dargestellt ist die erfasste Gasmenge je Gaskollektor nach der Einstellung der Anlage.

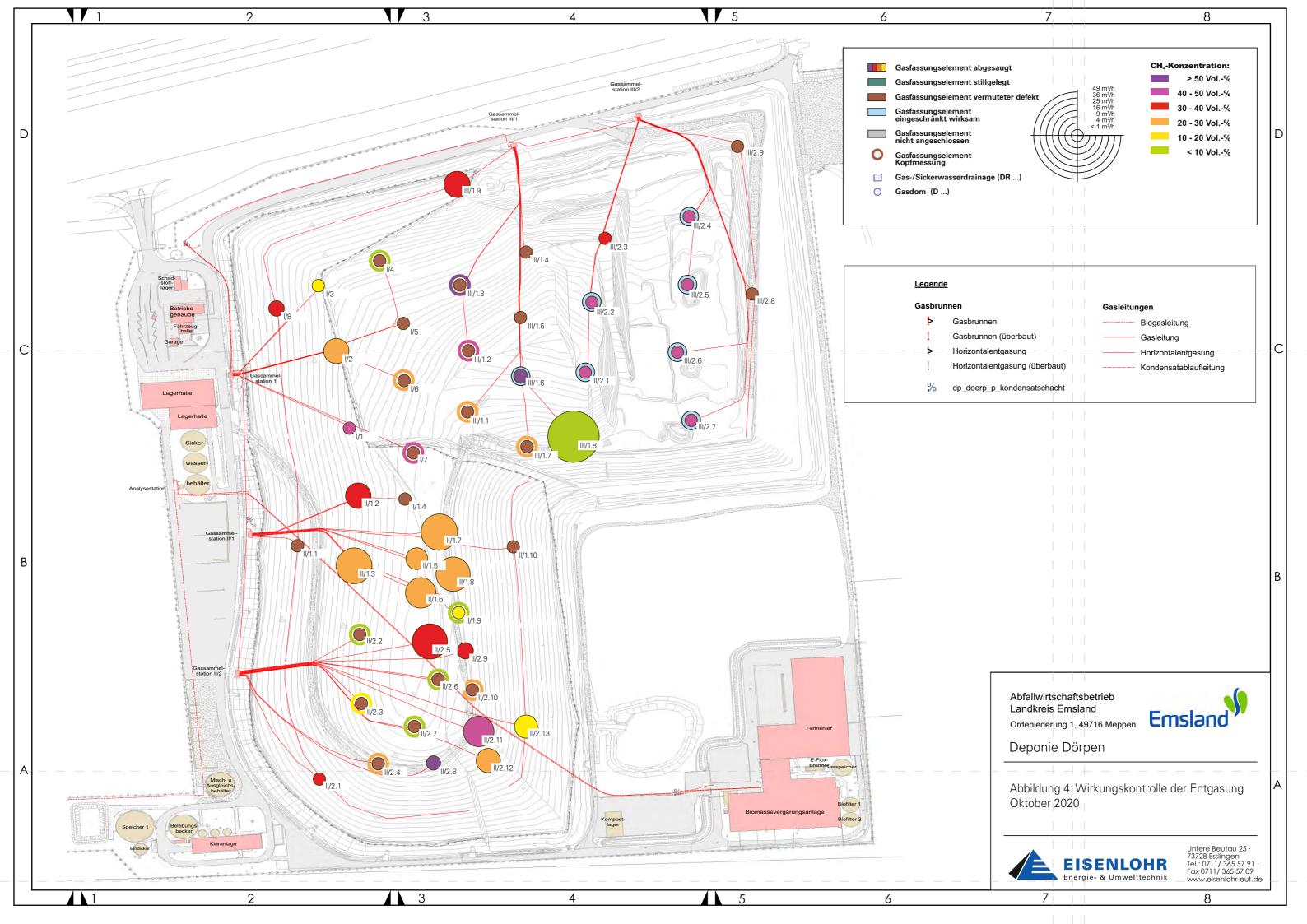
Die Kreisflächen entsprechen den jeweils erfassbaren Gasmengen. Die Farbe der Flächen zeigt gestaffelt die erfassbare Gasqualität. Dargestellt werden auch Gasbrunnen, die nicht abgesaugt werden (grün) sowie Gasbrunnen ohne Funktion (grau).

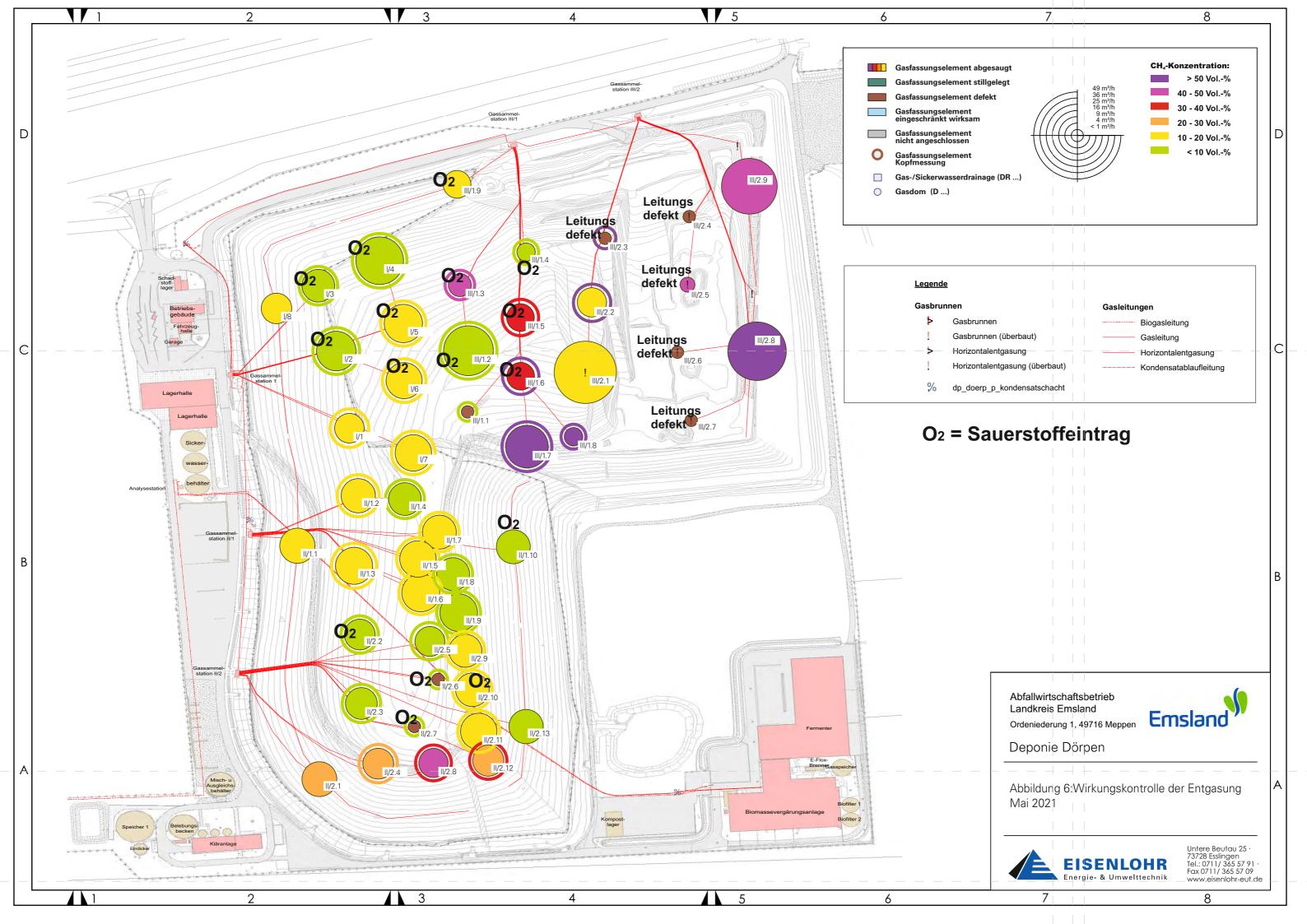
Die Grafiken zeigen eine ausgewogene Verteilung der Gasbrunnen.

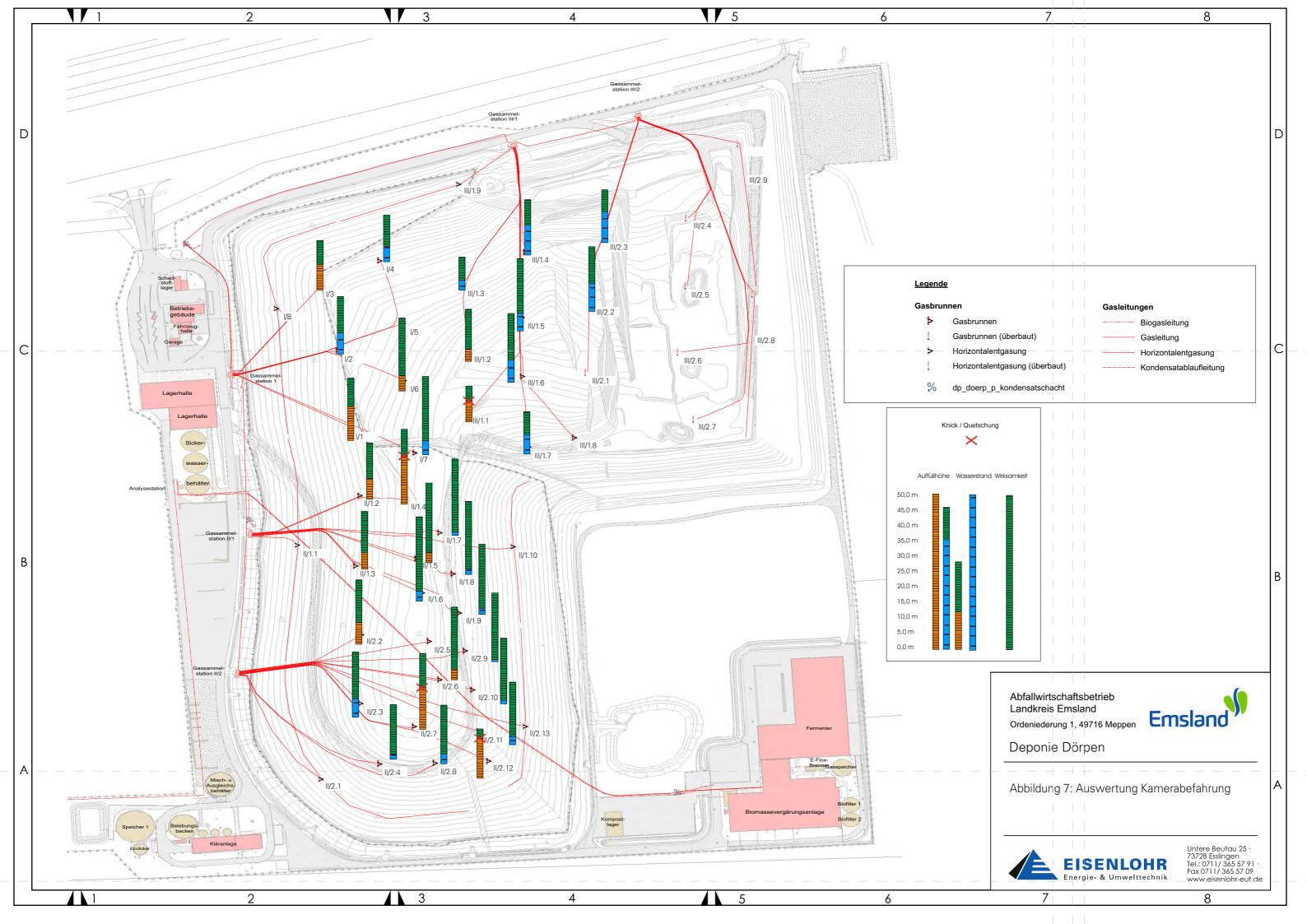
Nahezu alle Gasfassungselemente haben die gleiche Gasqualität an der Gassammelstation und den Gasbrunnenköpfen. Dies deutet darauf hin, dass keine Defekte am Gasfassungssystem vorhanden sind.

Die zunehmende Schwachgasbildung ist verantwortlich für den starken Rückgang der zur Verwertung geeigneten Deponiegasmenge.


Zahlreiche Gasbrunnen weisen während eines kontinuierlichen Regelbetriebs einen erhöhten Sauerstoffgehalt auf. Diese Gasbrunnen können mit der aktuellen Gasverwertung nicht mehr besaugt werden. Um Emissionsaustritte auf der Deponiefläche zu vermeiden, sollten diese Brunnen jedoch mit einer kleinen Gasmenge weiter betrieben werden.


Um die Emissionsaustritte zu verringern, sollte die Entgasung so eingestellt werden, dass die Gassammelstationen III/1 und III/2 stärker abgesaugt werden.


Die Absaugrate im abgedichteten Teil der Deponie sollte deutlich reduziert werden, da sich dieser Teil der Deponie in einem übersaugten Zustand befindet.


Die Abbildung 7 auf Seite 27 zeigt die grafische Darstellung der Kamerabeurteilung auf der Deponie Dörpen.

Die Wirksamkeit der Erfassung der einzelnen Gasbrunnen weisen einen guten Zustand auf. Eine weitere Ergänzung durch neue Gasbrunnen ist daher nicht notwendig.











#### 4.5 GASPROGNOSE - THEORETISCHES EMISSIONSPOTENZIAL

Auf Grundlage der Gasprognose nach FOD<sup>2</sup> wird das verbleibende Emissionspotential der Deponie berechnet.

#### **Grundlagen und Annahmen:**

oTS<sup>3</sup>-Anteil: 180 kg biologisch abbaubarer Kohlenstoff pro † Hausmülläquivalent Halbwertszeit: anfänglich 6 Jahre, ab 2004 ansteigend auf 8 Jahre

Gasproduktion (ungestört): bei CH<sub>4</sub> -Konzentration 50 Vol.-%, ca. 30 Vol.-% CO<sub>2</sub>, Rest N<sub>2</sub>

Ablagerungsmenge: ca. 911.238 Mg Hausmülläquivalent

Ablagerungszeitraum (Hausmüll): 1979 – 2004.

Bei der FOD-Methode nach IPCC4 (Guidelines 1996) wird für die Gasprognose eine Halbwertszeit von t 1/2 = 7,5 Jahren zugrunde gelegt. Diese Halbwertszeit konnte bei der Gasprognose für die Deponie Dörpen bestätigt werden. Der hier dargestellte Verlauf der Gasmengenentwicklung machte in der Verfüllphase den rechnerischen Ansatz von 6 Jahren für die Halbwertszeit notwendig. Durch den Abbau der leicht abbaubaren Substanzen verbleiben im Laufe der Jahre die schlechter bzw. langsamer abbaubaren Substanzen im Deponiekörper. Hierdurch nimmt die biologische Aktivität ab, d.h., die Halbwertszeiten der Umsetzung nehmen entsprechend zu. Ab 2005 wurde daher die Halbwertszeit schrittweise verlängert auf ca. 8 Jahre.

Durch die Anpassung der zu erwartenden Halbwertszeiten bildet die nachstehend dargestellte Gasprognose diese Entwicklung nach.

In **Abbildung 8** ist die Prognose der, von der Deponie Dörpen seit 1979 bis ca. 2029 gebildeten, Deponiegasmengen dargestellt.

Die Gasproduktion unterliegt jahreszeitlichen Schwankungen. Diese werden unter anderem durch unterschiedliche Temperaturen und Niederschläge verursacht. Für die weitere Betrachtung werden Jahresmittelwerte der Gasproduktion zugrunde gelegt.

<sup>&</sup>lt;sup>2</sup> First Order Decay (FOD)

<sup>&</sup>lt;sup>3</sup> oTS/t organische Trocken Substanz in kg je Tonne

<sup>&</sup>lt;sup>4</sup> Intergovernmental Panel on Climate Change (IPCC) in Genf



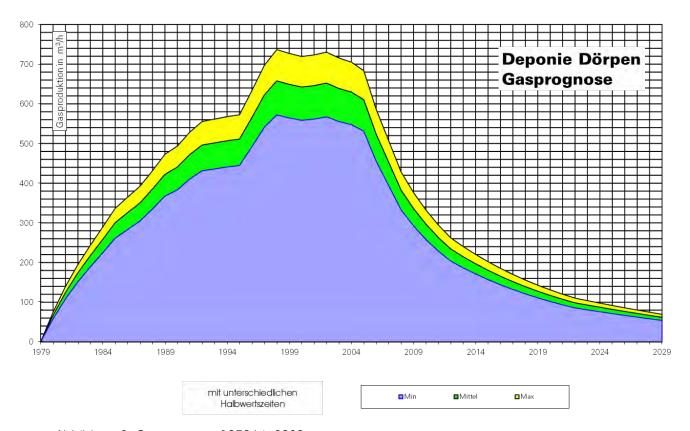



Abbildung 8: Gasprognose 1979 bis 2029

Für das Jahr 2020 ergibt sich eine Gasproduktion von minimal ca. 102 m $^3$ /h, im Mittel ca. 117 m $^3$ /h sowie maximal ca. 131 m $^3$ /h (CH $_4$  = 40 Vol.-%).

Die Milieubedingungen können als konstant betrachtet werden.

## 4.6 ERFASSTE DEPONIEGASMENGEN – 2008 - 2020

In der folgenden <u>Abbildung 9</u> ist die Gasmengenerfassung der Deponie Dörpen von 2008 bis 2020 im Vergleich zur Prognose der Gaserfassung dargestellt. Die Deponiegaserfassung erreichte von Anfang an nie die Prognose der erfassbaren Gasmengen.



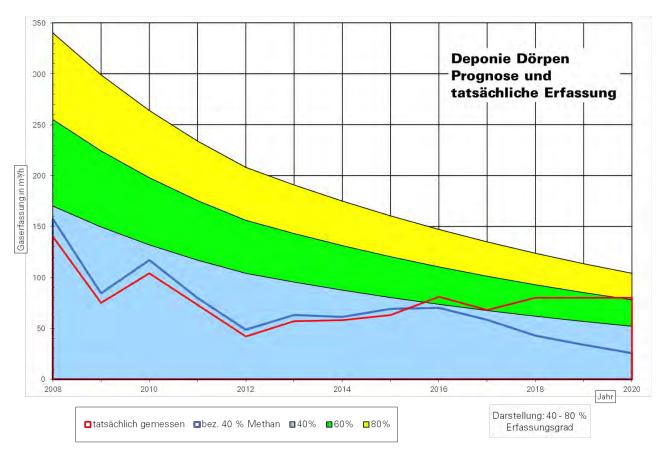



Abbildung 9: Erfasste Gasmengen im Vergleich zur Gasprognose (CH4 = 40 Vol.-%)

Eingetragen wurde in die Grafik der tatsächliche Verlauf der Erfassung (rot) ab 2008 bis 2020, sowie der tatsächliche Verlauf bezogen auf 40 Vol.% Methan (blau). In den Jahren 2020 wurde die Entgasungsanlage im Mittel mit ca. 80 m³/h Deponiegas und einem CH<sub>4</sub> - Gehalt von ca. 16 Vol.-% betrieben.

Die prognostizierte theoretisch erfassbare Gasmenge im Jahr 2020 liegt nach diesem Prognosemodell - je nach Erfassungsgrad - bei:

- ca. 52 m³/h (40 %-iger Erfassungsgrad),
- ca. 78 m³/h (60 %-iger Erfassungsgrad),
- ca. 104 m³/h (80 %-iger Erfassungsgrad),

Im Jahr 2020 wurde ein Erfassungsgrad über die Gasmenge von ca. 61 % ermittelt. Bezogen auf 40 Vol.% Methan wurde ein Erfassungsgrad von ca. 22 % ermittelt.



#### 4.7 BERECHNUNG DES OTS GEHALTS

#### Abfallmengen und Abfallzusammensetzung

Die auf der Deponie Dörpen zwischen 1979 und 2005 abgelagerten Mengen an Hausmüllbzw. hausmüllähnlichen Abfällen sind in <u>Anlage 3</u> zusammengefasst.

#### Verbliebene biologisch abbaubare organische Substanzen

Die verbliebenen organischen Substanzen der Deponie werden auf Grundlage der Gasprognose nach FOD und der durchgeführten Absaugversuche und Messungen berechnet.

Ablagerungszeitraum (Hausmüll): 1979 – 2005

Verfülltes Gesamtvolumen: ca. 1.800.000 m<sup>3</sup>

Verfüllte Gesamtmenge (berechnet): ca. 1.937.398 Mg

Ablagerungsmenge Hausmülläquivalent: 911.238 Mg

Aus der Berechnung der Gasprognose nach IPCC wurde das Restpotential der für die zukünftige Gasproduktion verbliebenen Restorganik ermittelt.

Halbwertszeit: am Anfang 6 Jahre⁵ , ansteigend auf 8 Jahre im Jahr 2030 Reaktionsgleichung 1. Ordnung.

Das im Jahr 2020 verbliebene Hausmülläquivalent betrug: 69.907 Mg. oTS-Anteil: 180 kg biologisch abbaubarer Kohlenstoff pro to Hausmülläquivalent.

Der oTS Gehalt wird berechnet aus der tatsächlich noch vorhandenen anaerob aktiven Substanz gemäß der noch entstehenden Gasmenge unter Berücksichtigung der tatsächlichen Halbwertszeit. Aus der nach dieser Berechnung ermittelten Hausmülläquivalenz ergibt sich unter Einbeziehung der Standartwerte der Gasprognose nach FOD (180 kg oTS) der verbliebene biologisch abbaubare Kohlenstoff Gehalt der Deponie. Durch Division mit der abgelagerten Gesamtmenge ergibt sich der oTS-Gehalt je Mg Ablagerungsmenge:

#### Berechnung oTS/Mg - im Jahr 2020

69.907 Mg x 180 kg/Mg / 1.937.398 Mg = **6,49 kg oTS/Mg** Ablagerungsmenge

<sup>&</sup>lt;sup>5</sup> aus der tatsächlichen Gasmengentwicklung berechnet.



#### 4.8 WEITERE ENTWICKLUNG DER GASERFASSUNG

Aktuell liegt die Gasentwicklung unterhalb der Gasprognose. Wir führen dies auf teilaerobe Zustände innerhalb des Deponiekörpers aufgrund der teilweisen Übersaugung 2018 und 2019 zurück.

Auch zukünftig wird die Anzahl der Gasbrunnen mit schwachem Gas weiter zunehmen. Diese Gasbrunnen sollten aber zur Aufrechterhaltung des Unterdrucks im Deponiekörper weiter in Betrieb gehalten werden. Die Gasmenge insgesamt sollte jedoch keineswegs wieder gesteigert werden.

Wir führen den hohen Sauerstoffeintrag im Deponiekörper im Bereich der Gassammelstation I/1 und III/1 insbesondere auf eine fehlende Oberflächenabdichtung zurück.

Die aktuelle FID Messung bei Betrieb der Anlage zeigt zudem erhöhte Emissionen oberhalb der Gassammelstation III/1 und III/2 auf der Deponieoberfläche.

Der Absaugversuch in der Gassammelstation III/2 ergab, dass 5 Gasleitungen defekt sind. Bei der darauffolgenden Kamerabefahrung der Gasleitungen in der Gassammelstation III/2 wurde auf den ersten 40 m kein Defekt gefunden. Da sich der defekt nicht im Randbereich befindet, ist eine Schadensbehebung aufgrund zu hoher Sanierungskosten nicht zumutbar.

Um die Emissionsaustritte zu verringern, sollte die Entgasung so eingestellt werden, dass die Drainagen in der Gassammelstation III/2 stärker besaugt werden.

Nach derzeitigem Kenntnisstand muss die Gasbehandlung noch bis ca. 2042 betrieben werden.

Die derzeit installierte E-Flox-Anlage kann Deponiegas mit Methankonzentrationen bis 6,0 Vol.-% verwerten. Zukünftig kann die E-Flox-Anlage auch nachgerüstet werden und Deponiegas mit Methankonzentration bis 3,0 Vol.-% verwerten.

Die nachfolgende **Abbildung 10** zeigt die mögliche Gaserfassung bis 2042 mit unterschiedlichen CH<sub>4</sub> -Gehalten an:



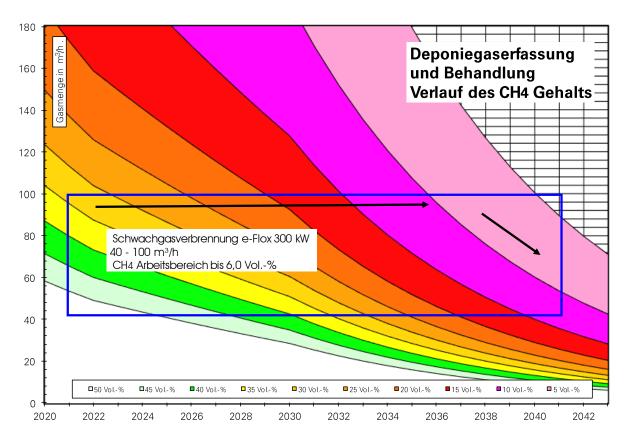



Abbildung 10: Gasprognose und Behandlung bis 2043

**Die Grafik** zeigt die Umstellung der Entgasung auf in-Situ-Stabilisierung. Unter Beibehaltung einer kontinuierlichen Absaugmenge (zwischen 40 und 100 m³/h) wird der für die Entgasung notwendige Unterdruck im Deponiekörper weiter aufrechterhalten. Der erfassbare CH<sub>4</sub>-Gehalt sinkt im Laufe der Jahre auf Werte von ca. 6,0 Vol.-%.

Eingetragen in die Grafik wurde die Dimensionierung der vorhandenen Schwachgasbehandlungsanlage (SGA).



## 5 MABNAHMENKATALOG FÜR TECHNISCHE UMSETZUNG

#### 5.1 GASBRUNNEN UND GASREGELSTATION

Die Rohrdurchmesser der bisherigen Gasregelstrecken sind zu groß für eine genaue Mengenmessung und Einstellung.

Aus diesem Grund ist es vorgesehen die Gasregelstrecken aus DN50 (Stahl-verzinkt) in DN25 (PE-EL) zu ersetzen.

Des Weiteren sollen alle Gassammelbalken in PE-EL umgerüstet werden.

Die vorhandenen Gasbrunnen befinden sich in einem gutem Zustand. Es besteht hier kein Optimierungsbedarf.

#### 5.2 IN SITU-STABILISIERUNG

Die Nachsorgezeit kann ohne In Situ-Stabilisierung bis zu 50 Jahre nach Ablagerungsende betragen.

Zur Verkürzung der Gasphase wurden verschiedene Belüftungstechniken zur in-Situ-Stabilisierung entwickelt.

Alle Verfahren haben gemeinsam, dass durch eine Vergrößerung der abgesaugten Deponiegasmenge mit oder ohne separate Zuluftführung der Deponiekörper aerobisiert wird und dadurch die biologischen Prozesse im Deponiekörper beschleunigt werden. Somit kann die anaerobe Biologie früher abgeschlossen werden.

Das BMUB fördert im Rahmen der Nationalen Klimaschutzinitiative (NKI) aktuell die Projekte zur In Situ Stabilisierung mit 60 % der Investkosten sowie mit ca. 25 % der Planungskosten.

Zuerst wurde das sogenannte Aeroflott-Verfahren entwickelt.

#### 5.2.1 Aeroflott Verfahren

Das von der Fa. IFAS entwickelte Verfahren beinhaltet die gleichzeitige Besaugung und Belüftung des Deponiekörpers.

Im Vergleich zur reinen anaeroben Biologie wird hierbei die bis zu 10-fache Luftmenge in den Deponiekörper eingeblasen und abgesaugt und einer regenerativen thermische Oxidation (RTO) bzw. einer katalytischen Verbrennung zugeführt.

Technisch wird das Verfahren umgesetzt durch zahlreiche neue Gasbrunnen, die gezielt verteilt werden, um alle Bereiche des Deponiekörpers zu belüften.

Nachteil des Verfahrens ist die doppelte Ausführung der Anlagentechnik (Entgasung und Belüftungstechnik), die mit hohen Kosten verbunden ist.



Ein weiterer Nachteil besteht darin, dass diese Anlagentechnik nach der erfolgten Belüftung rückgebaut werden muss und durch eine neue Minimal-Lösung zur Behandlung der noch immer entstehenden Restgase ersetzt werden muss.

Vorteil des Verfahrens ist die Verkürzung der Nachsorge im Gashaushalt auf ca. 8 Jahre (Faktor 1/6).

Im Vergleich zu den beiden anderen vorgestellten Verfahren ist der Invest und Betriebskostenaufwand jedoch um den Faktor 4 höher (geschätzt 1,5 – 2,4 Mio. €).

#### 5.2.2 Inspiro Verfahren

Das von der Fa. contec entwickelte Verfahren beinhaltet die gezielte Übersaugung des Deponiekörpers mit der Maßgabe das  $CH_4$  /  $CO_2$  Verhältnis im Deponiekörper gezielt unter 1 bzw. sogar unter 0,5 zu verändern. Hierzu wird die Absaugrate im Vergleich zur bisherigen Entgasung um ca. den Faktor 5 erhöht. Die Absaugrate ist wesentlich höher als die Deponiegasneubildung, hierdurch werden ca. 80 % Fremdluft in den Deponiekörper eingesogen. Das Entgasungssystem wird in der Regel nicht umgebaut.

Im Vergleich zur reinen anaeroben Biologie wird hierbei die bis zu 4-fache Luftmenge in den Deponiekörper eingesaugt. Das erfasste Deponiegas wird einer flammenlosen Verbrennung bzw. einer katalytischen Verbrennung zugeführt.

Nachteil des Verfahrens ist die ungezielte Zuführung der Fremdluft über das Sickerwassersammelsystem bzw. über die Oberfläche, ein weiterer Nachteil sind die Inkrustationen im Sickerwassersystem.

Vorteil des Verfahrens ist die Verkürzung der Nachsorge im Gashaushalt auf ca. 16 – 20 Jahre (Faktor  $\frac{1}{2}$ ).

Im Vergleich zum DepoFit® Verfahren ist der Invest und Betriebskostenaufwand jedoch ca. um den Faktor 1,5 - 2 (geschätzt 0,8 – 1,2 Mio. €) höher.

#### 5.2.3 DepoFit® Verfahren

Grundlage des DepoFit® Verfahrens ist die konstante Absaugung mit der Gasmenge, die erforderlich ist, beständig alle Emissionen der Deponie zu vermeiden.

Die Gaserfassungsraten werden durch die Stärke der Absaugung entscheidend beeinflusst. Bei einer Absaugung mit konstanter Gasmenge kann der Unterdruck auf ein gewünschtes Maß eingestellt werden. Die anaerobe biologische Aktivität im Deponiekörper nimmt im Laufe der Zeit ab. Durch die konstante Absaugung nimmt der erfassbare CH<sub>4</sub>-Gehalt im Deponiekörper beständig ab, dafür wird zunehmend Fremdluft eingetragen. Die Prozesse im Deponiekörper werden hierdurch beschleunigt. Es kommt zu einer maßvollen Erhöhung



der Temperatur sowie zu einer Befeuchtung (Wasserbildung) durch die Oxidation von Wasserstoff zu  $H_2O$ .

Das von der Eisenlohr Energie und Umwelttechnik (EEUT) entwickelte DepoFit® Verfahren bewirkt durch die angepasste Auslegung eine nachhaltige Wirkungsweise der Entgasung über sehr lange Zeiträume. Das Verfahren gliedert sich in drei Phasen (sh. Abbildung 11 auf der folgenden Seite):



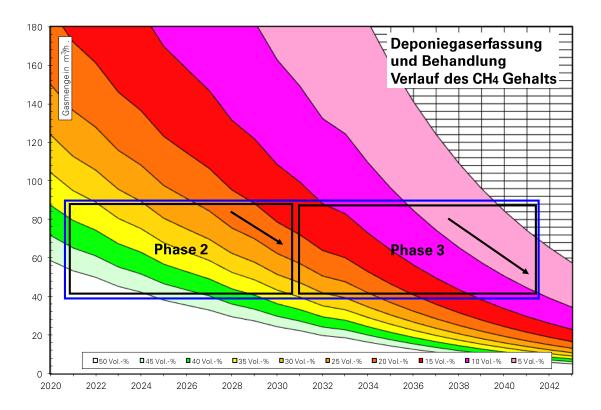



Abbildung 11: DepoFit® Verfahren

#### Phase 1 (CH<sub>4</sub>-Gehalt 50 bis 40 Vol.-%):

Die Phase 1 ist bereits abgeschlossen.

#### Phase 2 (CH<sub>4</sub>-Gehalt 40 bis 25 Vol.-%):

In der Phase 2 wird die noch vorhandene Gasverwertung auf Schwachgasnutzung ( $CH_4 > 25 \text{ Vol.-}\%$ ) umgebaut, die Gasmenge wird bis zum optimalen Gaserfassungsgrad erhöht, der  $CH_4$ -Gehalt wird auf ca. 25 Vol.% abgesenkt.

Nach Abschluss der Phase 2 erfolgt die schrittweise Absenkung des CH<sub>4</sub> Gehalts mit einer konstanten, kontinuierlichen Absaugung.

#### Phase 3 (CH<sub>4</sub>-Gehalt 25 bis 3,0 Vol.-%):

In der Phase 3 wird mit der gleichbleibenden Gasmenge der Phase 2 der CH<sub>4</sub> - Gehalt bis auf 3,0 Vol.-% abgesenkt.

Die konstante Gasmenge zur Behandlung bewirkt einen konstanten Unterdruckaufbau im Deponiekörper. Der CH<sub>4</sub>-Gehalt sinkt logarithmisch über die Jahre entsprechend der zurückgehenden Gaserzeugung im Deponiekörper.

Dadurch erfolgt ein zunehmender Fremdlufteintrag in den Deponiekörper, der eine zunehmende Aerobisierung des Deponiekörpers bewirkt.



Durch die Beschleunigung der Abbauprozesse und durch die zunehmende Aerobisierung wird gegenüber der bisherigen Entgasungstechnik eine Verkürzung der Nachsorgephase bei der Entgasung erreicht.

Die Auslegung einer neuen Behandlungsanlage erfolgt daher ebenfalls mit ca. 65 - 100 m³/h. Dadurch kann diese Anlage für wenigstens 20 Jahre betrieben werden und berücksichtigt dabei die lange Behandlungsdauer von schwer abbaubaren Stoffen im Deponiekörper.

Im Vergleich zu herkömmlichen Belüftungsverfahren erscheint dieses Vorgehen hinsichtlich der Betriebskosten und der Investitionskosten wesentlich wirtschaftlicher als die bislang auf dem Markt angebotenen Belüftungsverfahren (ca. 0,4 – 0,6 Mio. €).



# **6 KOSTENSCHÄTZUNG**

Es sind die folgende Kostenblöcke zu berücksichtigen (netto):

#### A: Ausbau Entgasungsanlage:

Summe förderfähig (netto)

Anpassen der Gasregelstation, Umbau von Stahl-Verzinkt in PE-EL

Gassammelstelle 49 Anschlüsse + 6 Sammelbalken

Die Kosten A betragen somit:

Summe A (netto)

Förderfähige Nebenkosten (aus A):

T.500 Euro

B: Umstellung des Entgasungsbetriebes – Einfahrbetrieb

Umstellung des Absaugbetriebes In Situ Stabilisierung,
einschließlich Berichtserstellung und Monitoring

20.000 Euro

Die Kosten B betragen somit:

20.000 Euro

ca. 177.500 Euro



# 7. MÖGLICHE EMISSIONSMINDERUNG

Zur Berechnung der möglichen Emissionsminderungen werden die aus der Gasprognose für die nächsten 21 Jahre zu erwartende Deponiegasbildung und die daraus entstehenden Methanmengen für die gesamte Deponie ermittelt.

## 7.1 METHANBILDUNG

Aus der Gasprognose wurden folgende mögliche Gasemissionen abgeleitet:

|      |                  | Gasbildung nac | h Gasprognose  |                 |
|------|------------------|----------------|----------------|-----------------|
| Jahr | Gasprognose m³/h | CH4 Gehalt     | Jahresmenge m³ | Summe gesamt m³ |
| 2021 | 107              | 35%            | 326.721        | 326.721         |
| 2022 | 98               | 35%            | 299.604        | 626.325         |
| 2023 | 93               | 35%            | 282.420        | 908.745         |
| 2024 | 87               | 35%            | 265.682        | 1.174.427       |
| 2025 | 82               | 35%            | 249.392        | 1.423.819       |
| 2026 | 77               | 35%            | 233.555        | 1.657.373       |
| 2027 | 72               | 35%            | 218.174        | 1.875.547       |
| 2028 | 67               | 35%            | 203.253        | 2.078.801       |
| 2029 | 62               | 35%            | 188.798        | 2.267.598       |
| 2030 | 57               | 35%            | 174.811        | 2.442.410       |
| 2031 | 51               | 35%            | 155.739        | 2.598.149       |
| 2032 | 46               | 35%            | 138.748        | 2.736.897       |
| 2033 | 41               | 35%            | 123.610        | 2.860.507       |
| 2034 | 36               | 35%            | 110.124        | 2.970.631       |
| 2035 | 32               | 35%            | 98.110         | 3.068.741       |
| 2036 | 29               | 35%            | 87.406         | 3.156.147       |
| 2037 | 26               | 35%            | 77.870         | 3.234.016       |
| 2038 | 23               | 35%            | 69.374         | 3.303.390       |
| 2039 | 20               | 35%            | 61.805         | 3.365.195       |
| 2040 | 18               | 35%            | 55.062         | 3.420.258       |
| 2041 | 16               | 35%            | 49.055         | 3.469.312       |
| 2042 | 14               | 35%            | 43.703         | 3.513.015       |

Die gesamte zu erwartende Methanbildung beträgt 3.513.015 m³.

Im Vergleich zu der durch die aktuelle Deponieentgasungsanlage erfassbaren Gasmenge ergibt sich das Emissionsminderungspotential.

Nicht herangezogen wird die Methanoxidation über die Oberflächenabdeckung der Deponie.



# 7.2 VERGLEICH MIT BESTANDSANLAGE

In nachstehender Tabelle sind die mit der Bestandsanlage erfassbaren Methanmengen gelistet.

|      | Ga            | sbehandlung mi  | t Bestandsanla | ge           |
|------|---------------|-----------------|----------------|--------------|
| Jahr | Gasmenge m³/h | CH4 Gehalt Vol% | CH4 Summe Jahr | Summe gesamt |
|      | (m³/h)        | (Vol%)          | (m³)           | (m³)         |
| 2021 | 80            | 17%             | 116.960        | 116.960      |
| 2022 | 80            | 15%             | 104.200        | 221.160      |
| 2023 | 80            | 13%             | 92.831         | 313.991      |
| 2024 | 80            | 12%             | 82.703         | 396.694      |
| 2025 | 80            | 11%             | 73.680         | 470.374      |
| 2026 | 80            | 10%             | 65.642         | 536.016      |
| 2027 | 80            | 9%              | 58.480         | 594.496      |
| 2028 | 80            | 8%              | 52.100         | 646.595      |
| 2029 | 80            | 7%              | 46.416         | 693.011      |
| 2030 | 80            | 6%              | 41.352         | 734.363      |
| 2031 | 80            | 5%              | 36.840         | 771.203      |
| 2032 |               |                 |                | 771.203      |
| 2033 |               |                 |                | 771.203      |
| 2034 |               |                 |                | 771.203      |
| 2035 |               |                 |                | 771.203      |
| 2036 |               |                 |                | 771.203      |
| 2037 |               |                 |                | 771.203      |
| 2038 |               |                 |                | 771.203      |
| 2039 |               |                 |                | 771.203      |
| 2040 |               |                 |                | 771.203      |
| 2041 |               |                 |                | 771.203      |
| 2042 |               |                 |                | 771.203      |

Die zu erwartende Methanerfassung mit bisheriger Anlagentechnik beträgt 771.203 m³.

Bei einem Vergleich zischen der Gasprognose und der bisherigen Erfassung betragen die Emissionen im Zeitraum 2021-2042 folgende Werte:

| Vergle | ich Gasprognos | e und bisherige            | Erfassung | 2.741.812 | m³ |
|--------|----------------|----------------------------|-----------|-----------|----|
|        |                | Entspricht                 |           | 1.966     | Mg |
| Emiss  | ionen          | oder CO <sub>2</sub> Aquiv | valenz    | 55.045    | Mg |



# 7.3 VERGLEICH NACH ERTÜCHTIGUNG DES ENTGASUNGSSYSTEMS

|      |               | Depofit V       | erfahren   |                 |  |
|------|---------------|-----------------|------------|-----------------|--|
| Jahr | Gasmenge m³/h | CH4 Gehalt Vol% | Summe a m³ | Summe gesamt m³ |  |
|      | (m³/h)        | (Vol%)          | (m³)       | (m³)            |  |
| 2021 | 80            | 34%             | 236.640    | 236.640         |  |
| 2022 | 80            | 31%             | 216.394    | 453.034         |  |
| 2023 | 80            | 28%             | 197.291    | 650.326         |  |
| 2024 | 80            | 26%             | 179.303    | 829.628         |  |
| 2025 | 80            | 23%             | 162.399    | 992.027         |  |
| 2026 | 80            | 21%             | 146.550    | 1.138.577       |  |
| 2027 | 80            | 19%             | 131.727    | 1.270.303       |  |
| 2028 | 80            | 17%             | 117.899    | 1.388.202       |  |
| 2029 | 80            | 15%             | 105.036    | 1.493.238       |  |
| 2030 | 80            | 80 13% 93.576   |            | 1.586.814       |  |
| 2031 | 80            | 12%             | 83.367     | 1.670.181       |  |
| 2032 | 80            | 11%             | 74.271     | 1.744.452       |  |
| 2033 | 80            | 10%             | 66.168     | 1.810.620       |  |
| 2034 | 80            | 8%              | 58.949     | 1.869.570       |  |
| 2035 | 80            | 8%              | 52.518     | 1.922.088       |  |
| 2036 | 80            | 7%              | 46.788     | 1.968.876       |  |
| 2037 | 80            | 6%              | 41.683     | 2.010.559       |  |
| 2038 | 80            | 5%              | 37.136     | 2.047.695       |  |
| 2039 | 80            | 5%              | 33.084     | 2.080.779       |  |
| 2040 | 80            | 4%              | 29.475     | 2.110.254       |  |
| 2041 | 80            | 4%              | 26.259     | 2.136.512       |  |
| 2042 | 80            | 3%              | 23.394     | 2.159.906       |  |

Die zu erwartende Methanerfassung beträgt 2.159.906 m³.

Nach Ertüchtigung des Entgasungssystems ergibt sich gegenüber der Bestandsanlage ein Emissionsminderungspotential im Zeitraum 2021 – 2042 von:

| Vergleich Gasprognos | se und DepoFit |                 | 1.353.109 | m³ |
|----------------------|----------------|-----------------|-----------|----|
|                      | Entspricht     |                 | 970       | Mg |
| Emissionen           | oder CO2 Aqui  | valenz          | 27.165    | Mg |
| Vergleich Bestand un | d Depofit      |                 |           |    |
|                      | Bestand:       |                 | 771.203   | m³ |
|                      | Depofit mit SG | A               | 2.159.906 | m³ |
|                      | Erhöhung der 0 | Gaserfassung    | 1.388.704 | m³ |
| Gasprognose          |                |                 | 3.513.015 |    |
|                      | entspricht     |                 | 996       | Mg |
|                      | oder CO2 Aqui  | valenz          | 27.880    | Mg |
|                      | Erhöhung       | in %            | 180%      |    |
|                      | Emissionsmind  | d. gg. Prognose | 1.388.704 | m³ |
|                      | entspricht     | in %            | 51%       |    |



## 8. CONTROLLING-KONZEPT ZUR IN SITU STABILISIERUNG

## 8.1 WIRKUNGSKONTROLLEN UND FUNKTIONSPRÜFUNGEN

Nach Abschluss der Baumaßnahme werden am Entgasungssystem zunächst wöchentliche, dann monatliche Einstellungen und Überprüfungen vorgenommen. Gasbrunnen mit Überdruck werden mit kleinen Gasmengen in Betrieb gehalten, die Einstellung erfolgt unter Beachtung des CH<sub>4</sub>/CO<sub>2</sub>-Verhältnisses zur maximalen Unterdruckbildung im Deponiekörper.

Die Emissionssituation soll während des Monitorings im halbjährlichen Turnus mittels LAS-Messungen untersucht werden.

#### 8.2 BERICHTE ZUM ANLAGENBETRIEB

Zusammenfassung und Auswertung der Messergebnisse der Überprüfung des Entgasungssystems (Funktionsprüfungen der Gasbrunnen) und der LAS-Messung.

- Auswertung des Einflusses der Senkung der Gasmenge auf die Gaszusammensetzung der Parameter CH<sub>4</sub>, CO<sub>2</sub>, O<sub>2</sub>
- Temperaturmessungen an den Gasbrunnen
- Auswertung der Druckverhältnisse im Deponiekörper
- Interpretation der Ergebnisse: Zusammenhang LAS-Messung gefasste Gasmengen an den einzelnen Gasfassungsstellen - technischer Zustand und Funktionsfähigkeit des Entgasungssystems
- Bewertung der Entgasungssituation
- Interpretation der Ergebnisse der Deponiegasuntersuchungen
- Bilanzierung Gesamt-C über CH<sub>4</sub>- und CO<sub>2</sub>-Frachten.
- Berechnung der Emissionsminderung gegenüber dem Referenzszenario.



# 9. ZEITPLAN

|         |   |      | -c | erc      | L r   | ah | r 1       | / Jo | ahr | 2 |    |    |    |    |    |    |    |    |   |
|---------|---|------|----|----------|-------|----|-----------|------|-----|---|----|----|----|----|----|----|----|----|---|
|         |   | onat |    | <u> </u> | , -   |    |           | , .  |     | _ |    |    |    |    |    |    |    |    | Г |
| 1       | I | 1    | 2  | 3        | 4     | 5  | 6         | 7    | 8   | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | Ĺ |
| ╫       | t |      |    |          |       |    |           |      |     |   |    |    |    |    |    |    |    |    | - |
| #       | t |      |    |          |       |    |           |      |     |   |    |    |    |    |    |    |    |    | Γ |
| 1       | t |      |    |          |       |    |           |      |     |   |    |    |    |    |    |    |    |    |   |
| 7       | t |      |    |          |       |    |           |      |     |   |    |    |    |    |    |    |    |    | Γ |
|         | Ť |      |    |          |       |    |           |      |     |   |    |    |    |    |    |    |    |    | Γ |
| 7       | T |      |    |          |       |    |           |      |     |   |    |    |    |    |    |    |    |    | Γ |
| 7       | T |      |    |          |       |    |           |      |     |   |    |    |    |    |    |    |    |    | Γ |
| П       | T |      |    |          |       |    |           |      |     |   |    |    |    |    |    |    |    |    | Γ |
|         | Ť |      |    |          |       |    |           |      |     |   |    |    |    |    |    |    |    |    | Γ |
|         | T |      |    |          |       |    |           |      |     |   |    |    |    |    |    |    |    |    | Γ |
|         | T |      |    |          |       |    |           |      |     |   |    |    |    |    |    |    |    |    | Ī |
|         | T |      |    |          |       |    |           |      |     |   |    |    |    |    |    |    |    |    | Γ |
|         | T |      |    |          |       |    |           |      |     |   |    |    |    |    |    |    |    |    | Ī |
|         | T |      |    |          |       |    |           |      |     |   |    |    |    |    |    |    |    |    | Ī |
|         | T |      |    |          |       |    |           |      |     |   |    |    |    |    |    |    |    |    | Ī |
|         | Τ |      |    |          |       |    |           |      |     |   |    |    |    |    |    |    |    |    |   |
|         | T |      |    |          |       |    |           |      |     |   |    |    |    |    |    |    |    |    |   |
| П       | Τ |      |    |          |       |    |           |      |     |   |    |    |    |    |    |    |    |    | Ī |
|         |   |      |    |          |       |    |           |      |     |   |    |    |    |    |    |    |    |    | Ĺ |
|         |   |      |    |          |       |    |           |      |     |   |    |    |    |    |    |    |    |    | Ĺ |
|         |   |      |    |          |       |    |           |      |     |   |    |    |    |    |    |    |    |    | Ĺ |
|         | ľ |      |    |          |       |    |           |      |     |   |    |    |    |    |    |    |    |    | Ĺ |
| $\prod$ | Γ |      |    |          |       |    |           |      |     |   |    |    |    |    |    |    |    |    | Ĺ |
| П       |   |      |    |          |       |    |           |      |     |   |    |    |    |    |    |    |    |    | Ĺ |
|         |   |      |    |          | 1 2 3 |    | 1 2 3 4 5 |      |     |   |    |    |    |    |    |    |    |    |   |

Nach positivem Förderbescheid soll mit der Planung begonnen und die Ausführung vorgenommen werden.

# Aufgestellt:

Eisenlohr Energie & Umwelttechnik

Esslingen, den 23-07.2021

Martin Eisenlohr



#### LANDKREIS EMSLAND

### ORDENIEDERUNG 1

### **D-49716 MEPPEN**

Der Landkreis Emsland bestätigt die Richtigkeit der gemachten Angaben zur Potentialstudie und der anschließenden Vorhabenbeschreibung

Bevollmächtigter des Landkreis Emsland

Herr Harald Litz

Meppen, den

Unterschrift



## **ANLAGENVERZEICHNIS**

- Anlage 1: Referenzliste der Eisenlohr Energie und Umwelttechnik
- Anlage 2: Stellungnahme der Genehmigungsbehörde zum geplanten Vorhaben
- Anlage 3: Tabelle der abgelagerten Abfälle
- Anlage 4: Ingenieurangebot der Eisenlohr Energie & Umwelttechnik GmbH
- Anlage 5: Messprotokolle Blatt Nr. 1-10
- Anlage 6: Tiefengestaffelte Untersuchung Deponie Dörpen
- Anlage 7: Absaugversuch
- Anlage 8: Auswertung Kamerabefahrung Gassammelstation III/2



# Anlage 1: Referenzliste der Eisenlohr Energie und Umwelttechnik



#### ANLAGE

## REFERENZLISTE DER EISENLOHR ENERGIE UND UMWELTTECHNIK (STAND 2021) NATIONALE KLIMASCHUTZINITIATIVE- PROJEKTE SEIT 2014

#### DEPOFIT® VERFAHREN ZUR IN SITU STABILISIERUNG

Deponie Backnang-Steinbach Potentialanalyse 2021 Studie zur Optimierung der Gaserfassung

Derzeit ein BHKW installiert.

Auftraggeber: AWRM Abfallwirtschaft Rems-Murr AöR

Deponie Groptitz Potentialanalyse 2021 Studie zur Optimierung der Gaserfassung

Auftraggeber: Zweckverband Abfallwirtschaftsbetrieb

Oberes Elbtal (ZAOE)

Deponie Gröbern Potentialanalyse 2021 Studie zur Optimierung der Gaserfassung

Auftraggeber: Zweckverband Abfallwirtschaftsbetrieb

Oberes Elbtal (ZAOE)

Deponie Breinermoor

Neubau SGA mit Wärmeauskopplung  $40-200 \text{ m}^3/\text{h}$ , 600 kW,  $< 6.0 \text{ Vol.-}\% \text{ CH}_4$ 

Auftraggeber: Abfallwirtschaftsbetrieb Landkreis Leer

Deponie Eichelbuck Potentialanalyse 2021 Studie zur Optimierung der Gaserfassung

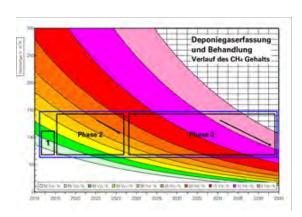
Derzeit ein BHKW, 2 Mikrogasturbinen und eine HTV installiert.

Auftraggeber: Abfallwirtschaft und Stadtreinigung Freiburg GmbH

Deponie Nürnberg Süd

Neubau Schwachgasanlage und Optimierung der Entgasung

Leistung 160 kW, max. 80 m<sup>3</sup>/h


Inbetriebnahme 2021

Auftraggeber: Abfallwirtschaftsbetrieb Stadt Nürnberg

Deponie Weißwasser "Grüne Fichte" Potentialanalyse 2021 Studie zur Optimierung der Gaserfassung

Auftraggeber: Regionaler Abfallverband Oberlausitz-

Niederschlesien RAVON









Deponie "Hufe" Potentialanalyse 2021 Studie zur Optimierung der Gaserfassung

Auftraggeber: Regionaler Abfallverband Oberlausitz-

Niederschlesien RAVON

Deponie Heuchelheim Klingen Baumaßnahmen 2021 Neubau Schwachgasbehandlungsanlage

Derzeit eine Haase Anlage installiert. Auftraggeber: EWW Südliche Weinstraße

Deponie Fludersbach Neubau Gasmotor

Arbeitsbereich ab 15 Vol.-% 250 kWel Inbetriebnahme: 2021, BK ca. € 300.000.--Auftraggeber: Kreis Siegen Wittgenstein

Deponie Hintere Dollert Baumaßnahme 2021

Umbau Gasmotor zum Schwachgasmotor, neue SGA 300 kW, Arbeitsbereich 3,0 Vol.-% Auftraggeber: Abfallwirtschaftsbetrieb Rastatt

Deponie Burghof Ausbau der Betriebsentgasung

Zusätzliche Gasbrunnen und neues BHKW 750 kW Inbetriebnahme: 2021, BK ca. € 950.000.--Auftraggeber: AVL Ludwigsburg mbH

Deponie Hintere Dollert Potentialanalyse 2020 Studie zur Optimierung der Gaserfassung

Derzeit ein BHKW installiert.

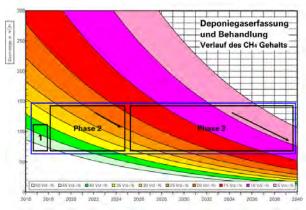
Auftraggeber: Abfallwirtschaftsbetrieb Rastatt

Deponie Reibertsbach Potentialanalyse 2020 Studie zur Optimierung der Gaserfassung

Derzeit zwei Gasturbinen installiert.

Auftraggeber: Abfallwirtschaftsbetrieb Birkenfeld

Deponie Dörpen und Venneberg Potentialanalyse 2020 Studie zur Optimierung der Gaserfassung


Derzeit eine e-flox Anlage bzw. BHKW installiert. Auftraggeber: Abfallwirtschaftsbetrieb Emsland

Deponie Flechum und Wesuwe Potentialanalyse 2019 Studie zur Optimierung der Gaserfassung

Derzeit 2 x SGF Fa. BMF Haase

Auftraggeber: Abfallwirtschaftsbetrieb Emsland









#### Deponie Fludersbach Neubau Schwachgasbehandlungsanlage und Optimierung Entgasung

Leistung 300 kW Methangehalt ab 6 Vol.-% Inbetriebnahme: 2020, BK ca. € 800.000.--Auftraggeber: Kreis Siegen Wittgenstein

Deponie Burghof Potentialanalyse 2019 Studie zur Optimierung der Gaserfassung

Auftraggeber: AVL Ludwigsburg mbH

Deponie Nürnberg Süd Potentialanalyse 2019 Studie zur Optimierung der Gaserfassung Derzeit Gasbehandlung HTV 300 KWel, 250 m³/h Auftraggeber: Stadt Nürnberg

Deponie Scheiderwald Neubau Schwachgasbehandlungsanlage und Optimierung Entgasung

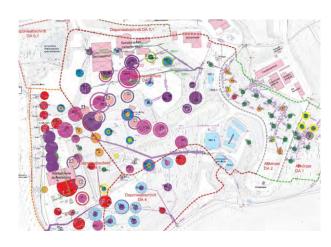
Leistung 150 kW Methangehalt ab 3 Vol.-% Inbetriebnahme: 2019, BK ca. € 360.000.--Auftraggeber: Abfallwirtschaft Lahn Dill

Deponie Niedercunnersdorf und Radgendorf Potentialanalyse 2018/19 Studie zur Optimierung der Gaserfassung

Derzeit Gasbehandlung HTV 750 KWel, 200 m³/h

Auftraggeber: RAVON Oberlausitz

Deponie Fludersbach Potentialanalyse 2018/19 Studie zur Optimierung der Gaserfassung Derzeit Gasverwertung 500 KWel, 320 m³/h


Auftraggeber: Kreis Siegen Wittgenstein

Deponie Leppe Potentialanalyse 2018 Studie zur Optimierung der Gaserfassung

Derzeit Gasverwertung 900 KWel, 520 m<sup>3</sup>/h Auftraggeber: Bergische Abfallverband (BAV)









Deponie Schelderwald Potentialanalyse 2018 Studie zur Optimierung der Gaserfassung

Derzeit Gasbehandlung HTV 300 KWel, 50  $\,\mathrm{m}^3/\mathrm{h}$ 

Auftraggeber: Abfallwirtschaft Lahn Dill

Deponie Nadelwitz und Kunnersdorf Neubau Schwachgasbehandlungsanlage mit Wärmenutzung

Leistung 250 bzw. 300 kW Methangehalt ab 3 Vol.- $\!\%$ 

Inbetriebnahme: 2018, BK ca. € 600.000.--

Auftraggeber: RAVON Oberlausitz

Neubau
Deponie Stockstadt
Potentialanalyse 2017
Studie zur Optimierung der Gaserfassung

Derzeit Gasverwertung 250 KWel, 120 m³/h Auftraggeber: Landkreis Aschaffenburg

Deponie Am Lemberg Investiver Antrag 2016 Neubau Schwachgasbehandlungsanlage mit Wärmenutzung Optimierung des Entgasungssystems

Leistung 500 kW Methangehalt ab 6 Vol.-% Inbetriebnahme: 2017, BK ca. € 900.000.--

Auftraggeber: AVL Ludwigsburg

Deponie Eichholz Potentialanalyse 2016 Investiver Antrag 2016 Neubau Schwachgasbehandlungsanlage mit Wärmenutzung

Leistung 1 MW, 500 m³/h, Methangehalt ab 6 Vol.-% Inbetriebnahme: 2017, BK ca. € 500,000,--

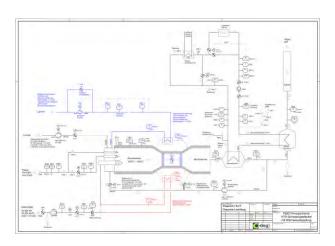
Auftraggeber: AWG Rems-Murr-Kreis mbH

Deponie Schorndorf Potentialanalyse 2014 Investiver Antrag 2014

Neubau Schwachgasbehandlungsanlage HTX Fa. Göbel Neubau zwei Gasbrunnen

BK ca. € 320.000

Leistung 60 m<sup>3</sup>/h, Methangehalt ab 6 Vol.-%


Inbetriebnahme: 2015

Auftraggeber: AWG Rems-Murr-Kreis mbH

Deponie Lichte Potentialanalyse 2015 Absaugversuch 2015

Leistung 80 m³/h, Methangehalt ab 16 Vol.-% Inbetriebnahme: 2015, BK ca. € 10.000.--Auftraggeber: AWG Rems-Murr-Kreis mbH











# DEPONIEENTGASUNG/GASVERWERTUNG - PLANUNG/BAUAUSFÜHRUNG AB 2015 BIS 2018

#### Deponie Einöd

#### Neubau Schwachgasbehandlungsanlage SGF Fa. Haase

Leistung 50 m³/h, Methangehalt ab 6 Vol.-% Inbetriebnahme: 2018, BK ca. € 170.000.--

Auftraggeber: AWS Stuttgart

#### **Deponie Eichholz**

#### Reparaturen und Endausbau der Betriebsentgasung

Inbetriebnahme: 2018, BK ca. € 150.000.--Auftraggeber: AWG Rems-Murr-Kreis mbH

#### Deponie Burghof Ausbau der Betriebsentgasung

Zusätzliche Gasbrunnen Reparaturen Inbetriebnahme: 2018, BK ca. € 200.000.--Auftraggeber: AVL Ludwigsburg mbH

#### Deponie Fludersbach

Studie zur Gaserfassung und Gasverwertung 2018 Verbesserung der Gaserfassung Konzept zur neuen Gasverwertung

#### Deponie Winterbach Umbau BHKW zur Schwachgasnutzung

Leistung 130 kW, Methangehalt ab 25 Vol.-% Erhöhung der Gaserfassung um 100 % Inbetriebnahme: 2016, BK ca. € 40.000.--Auftraggeber: Kreis Siegen Wittgenstein

#### Deponie Hamberg Neubau BKW zur Schwachgasnutzung

Leistung 50 kW, Methangehalt ab 25 Vol.-% Inbetriebnahme: 2015, BK ca. € 140.000.--Auftraggeber: HDG Enzkreis

#### Deponie Lichte

#### Umrüstung mit CHC Schwachgasbehandlungsanlage

Leistung 80 m³/h, Methangehalt ab 16 Vol.-% Inbetriebnahme: 2015, BK ca. € 10.000.-- Auftraggeber: AWG Rems-Murr-Kreis mbH







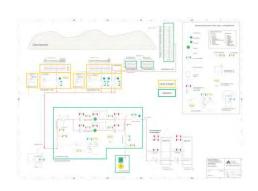


## DEPONIEENTGASUNG/GASVERWERTUNG – PLANUNG/BAUAUSFÜHRUNG AB 2012 BIS 2015

#### Deponie Backnang-Steinbach Umbau BKW zur Schwachgasnutzung

Leistung 100 m³/h, Methangehalt ab 25 Vol.-% Inbetriebnahme: 2014, BK ca. € 30.000.--Auftraggeber: AWG Rems-Murr-Kreis mbH

#### Deponie Burghof Ausschreibung der neuen Gasverwertung


Leistung 1,2 MW, mit Wärmekonzept Inbetriebnahme: 2014, BK ca. € 600.000.--Auftraggeber: AVL Ludwigsburg mbH

#### Deponie Site d'Habay Belüftungsversuch zur Absenkung H<sub>2</sub>S

Leistung 100 m³/h, H<sub>2</sub>S Gehalt ca. 3.000 ppm Ausführung Oktober bis Feb. 2014 Auftraggeber: AIVE Arlon Belgien

#### Deponie Burghof Ausbau der Betriebsentgasung

Zusätzliche Gasbrunnen Umbau HGS Inbetriebnahme: 2013, BK ca. € 80.000.--Auftraggeber: AVL Ludwigsburg mbH









# DEPONIEENTGASUNG/GASVERWERTUNG - PLANUNG/BAUAUSFÜHRUNG AB 2012 BIS 2016

#### Deponie Backnang-Steinbach Sanierung Entgasungssystem

Reparaturen und Abdichtungsarbeiten Inbetriebnahme: 2013, BK ca. € 20.000.--Auftraggeber: AWG Rems-Murr-Kreis mbH



#### **Deponie Hamberg**

Sanierung Entgasungssystem. Neue Schwachgasfackelanlage

Leistung 100 m³/h, Methangehalt ab 15 Vol.-% Inbetriebnahme: 2013, BK ca. € 360.000.--

Auftraggeber: HDG Hamberg Deponiegesellschaft



## Deponie Fludersbach

Belüftungsanlage zur Aerobisierung und Absenkung der Schwefelwasserstoffkonzentration im Deponiegas

Inbetriebnahme: 2012, BK € 48.000.--Auftraggeber: Abfallwirtschaft LRA Siegen



#### Deponie Böblingen

Trocknungsanlage für Holzhackschnitzel

Wärmeauskopplung aus Deponiegaskraftwerk Leitung 400 kW, Trocknungsleistung ca. 6,0 Mg/d Inbetriebnahme: 2012, BK € 300.000.--Auftraggeber: Abfallwirtschaft LRA Böblingen



#### **Deponie Burghof**

Erweiterung und Optimierung der Betriebsentgasung

Erweiterung der Entgasungsanlage Neue Gasbrunnen neue Gasregelstationen . Inbetriebnahme: 2011/2012, BK ca. € 500.000.--Auftraggeber: AVL, Ludwigsburg,



#### DEPONIEENTGASUNG/GASVERWERTUNG - GUTACHTEN/KONZEPTE

#### **Deponie Winterbach**

Studie zur Gaserfassung und Gasverwertung 2017 Verbesserung der Gaserfassung Konzept zur neuen Gasverwertung Auftraggeber: Kreis Siegen Wittgenstein

#### **Deponie Bruchsal**

Studie zur Gaserfassung und Gasverwertung 2016 Verbesserung der Gaserfassung Konzept zur neuen Gasverwertung Auftraggeber: Landratsamt Karlsruhe

#### Deponie Winterbach

Studie zur Gaserfassung und Gasverwertung 2015 Verbesserung der Gaserfassung Konzept zur neuen Gasverwertung Auftraggeber: Kreis Siegen Wittgenstein

#### Deponie Gröbern und Pirna-Kleincotta

Studie zur Gaserfassung und Gasverwertung 2010 Verbesserung der Gaserfassung Konzept zur neuen Gasverwertung Auftraggeber: Zweckverband Abfallwirtschaft Oberes Elbtal (ZAOE)

#### Deponie Reinstetten

Studie zur Gaserfassung und Gasverwertung 2009 Verbesserung der Gaserfassung Konzept für Schwachgasbehandlung/Verwertung Auftraggeber: Abfallwirtschaftsbetrieb des Landratsamts Biberach

#### **Deponie Burghof**

Studie zur neuen Gasverwertung ab 2010 Mit Konzepten der Schwachgasnutzung. Auftraggeber: AVL, Landkreis Ludwigsburg

#### Deponie Am Lemberg

Prognose des Gaspotentials ab 2007 - 2012 Erweiterung der Entgasungsanlage Neue Konzepte der Schwachgasnutzung. Erdgasbeimischung, Pflanzenöl oder Weitere. Auftraggeber: AVL, Landkreis Ludwigsburg

#### **Deponie Burghof**

Prognose des zukünftigen Gaspotentials ab 2006 Berücksichtigung der bereits endverfüllten Bereiche Empfehlung zur Auslegung der Gasnutzung Auftraggeber: AVL, Landkreis Ludwigsburg

#### **Deponie Eichholz**

Studie zur Gasreinigung des Deponiegases 2004 Entfernung H<sub>2</sub>S aus dem Deponiegas, Auftraggeber: AWG, Rems-Murr-Kreis



# DEPONIEENTGASUNG - WIRKUNGSKONTROLLE DER ENTGASUNG (FREMDKONTROLLE NACH DEP.-VERORDNUNG)

#### **Deponie Marchenbach**

LAS Messung nach Deponie Verordnung seit 2021 Landratsamt Freising Abfallwirtschaft

#### **Deponie Hintere Dollert**

LAS Messung nach Deponie Verordnung seit 2021 Abfallwirtschaftsbetrieb Landkreis Rastatt

#### Deponie Grötzingen

LAS Messung nach Deponie Verordnung seit 2021 Landratsamt Karlsruhe

#### **Deponie Leppe**

LAS Messung nach Deponie Verordnung seit 2018 Auftraggeber: Bergischer Abfallwirtschaftsverband

#### **Deponie Bruchsal**

LAS Messung nach Deponie Verordnung seit 2015 Landratsamt Karlsruhe

#### Deponie Fludersbach

LAS Messung nach Deponie Verordnung 2015 bis 2018 Kreis Siegen Wittgenstein

#### **Deponie Winterbach**

LAS Messung nach Deponie Verordnung 2015 bis 2018 Kreis Siegen Wittgenstein

#### Deponie Ittersbach

FID Messung nach Deponie Verordnung 2013 bis 2017, ab 2021 Landratsamt Karlsruhe

#### **Deponie Hamberg**

LAS Messung nach Deponie Verordnung seit 2012 HDG Hamberg Deponiegesellschaft mbH

#### **Deponie Eichelbuck**

LAS Messung nach Deponie Verordnung seit 2008 Abfallwirtschaft und Stadtreinigung Freiburg GmbH

#### Deponie Einöd

Wirkungskontrolle der Entgasung nach TASi, 2001 bis 2016 Auftraggeber: Stadt Stuttgart

#### **Deponie Erbachtal**

Wirkungskontrolle der Entgasung nach TASi, 2008 bis 2009

## Auftraggeber: Stadt Stuttgart

Deponie Eichholz

Wirkungskontrolle der Entgasung nach Deponie Verordnung, seit 2001 Betreuung und Optimierung der Entgasung

Auftraggeber: AWRM (vormals AW) Rems-Murr-Kreis



#### Deponie Backnang-Steinbach

Wirkungskontrolle der Entgasung nach Deponie Verordnung, seit 2001

Betreuung und Optimierung der Entgasung

Auftraggeber: AWRM (vormals AW) Rems-Murr-Kreis

#### **Deponie Lichte**

Wirkungskontrolle der Entgasung nach Deponie Verordnung, seit 2001

Betreuung und Optimierung der Entgasung

Auftraggeber: AWRM (vormals AW) Rems-Murr-Kreis

#### **Deponie Schorndorf**

Wirkungskontrolle der Entgasung nach Deponie Verordnung, seit 2001

Betreuung und Optimierung der Entgasung

Auftraggeber: AWRM (vormals AW) Rems-Murr-Kreis

#### Deponie Tuningen

Wirkungskontrolle der Entagsung nach TASi, 2001 bis 2007

Auftraggeber: Schwarzwald-Baar-Kreis

#### Deponie Hüfingen

Wirkungskontrolle der Entgasung nach TASi, 2001 bis 2007

Auftraggeber: Schwarzwald-Baar-Kreis

#### Deponie Talheim

Wirkungskontrolle der Entgasung nach TASi, 2001, 2002

Auftraggeber: Landkreis Tuttlingen, Kreisplanungs- und Bauamt

#### Deponie Mössingen

Wirkungskontrolle der Entgasung nach Deponie Verordnung, seit 2001

Auftraggeber: Stadt Mössingen

#### Deponie Am Lemberg

Wirkungskontrolle der Entgasung nach Deponie Verordnung, seit 2001

Auftraggeber: AVL, Landkreis Ludwigsburg

#### **Deponie Burghof**

Wirkungskontrolle der Entgasung nach Deponie Verordnung, seit 2001

Auftraggeber: AVL, Landkreis Ludwigsburg

#### Deponie Schöneiche

Wirkungskontrolle der Entgasung nach TASi, 2003

Gefährdungsgutachten

Auftraggeber: MEAB, Neu Fahrland, als Subunternehmer der Fichtner GmbH & Co.

#### Deponie Schinderteich

Wirkungskontrolle der Entgasung nach Deponie Verordnung bis 2014

Auftraggeber: ZAV, Landkreis Reutlingen Tübingen

#### Deponie Katzenbühl

Wirkungskontrolle der Entgasung nach Deponie Verordnung, 2004 bis 2016

Auftraggeber: AWB Esslingen



Anlage 2: Stellungnahme der Genehmigungsbehörde zum geplanten Vorhaben





Staatliches Gewerbeaufsichtsamt Oldenbura

Behörde für Arbeits-, Umwelt- und Verbraucherschutz

Staatl. Gewerbeaufsichtsamt Oldenburg Theodor-Tantzen-Platz 8 • 26122 Oldenburg

Abfallwirtschaftsbetrieb Landkreis Emsland Ordeniederung 1 49716Meppen

Landkreis Emsland MEPPEN

0 8. Okt. 202

Bearbeiter/in

Herr Mannai

poststelle@gaa-ol.niedersachsen.de

Ihr Zeichen, Ihre Nachricht vom

- ohne -

Mein Zeichen (Bei Antwort angeben) OL 000000772-124 Mi

0441 799-2414

Datum

04.10.2021

Umstellung der Deponieentgasung auf In Situ-Stabilisierungsverfahren und Ertüchtigung des Deponiegasfassungssystems im Rahmen der Förderung nach NKI

Deponie Dörpen

Ihre E-Mail vom 10.09.2021

Sehr geehrter Herr Litz,

auf Grundlage Ihrer E-Mail vom 10.09.2021 bestehen seitens des staatlichen Gewerbeaufsichtsamtes (GAA) Oldenburg aufgrund der zurückgehenden Gasmengen und Methankonzentrationen gegen einen Systemwechsel auf In Situ-Stabilisierungsverfahren und der Umrüstung von 5 Gassammelstationen in PE-EL sowie Verkleinerung der bestehenden Gasregelstrecken keine grundsätzlichen Bedenken.

Die Anlagen und Änderungen sind dem GAA Oldenburg gem. Bundesimmissionsschutzgesetz anzuzeigen oder bzw. zu genehmigen. Der Umfang der Antragsunterlagen ist mit dem GAA Oldenburg abzustimmen.

Mit freundlichen Grüßen

Im Auftrage

S. Mannai

Mannai

Internet



# Anlage 3: Tabelle der abgelagerten Abfälle

| Jahr   | Hausmüll | Sperrmüll | Gewerbe-<br>abfälle | Bauabfälle | Gesamt    |
|--------|----------|-----------|---------------------|------------|-----------|
|        | Mg       | Mg        | Mg                  | Mg         | Mg        |
|        |          |           |                     |            |           |
| 1979   | 16.783   | 5.965     | 44.356              | 8.396      | 75.500    |
| 1980   | 16.383   | 5.823     | 43.299              | 8.195      | 73.700    |
| 1981   | 15.871   | 5.641     | 41.948              | 7.940      | 71.400    |
| 1982   | 15.671   | 5.570     | 41.419              | 7.840      | 70.500    |
| 1983   | 16.271   | 5.784     | 43.005              | 8.140      | 73.200    |
| 1984   | 17.694   | 6.289     | 46.765              | 8.852      | 79.600    |
| 1985   | 14.604   | 5.191     | 38.599              | 7.306      | 65.700    |
| 1986   | 15.116   | 5.373     | 39.950              | 7.562      | 68.000    |
| 1987   | 18.383   | 6.534     | 48.586              | 9.196      | 82.700    |
| 1988   | 19.850   | 7.056     | 52.464              | 9.930      | 89.300    |
| 1989   | 16.227   | 5.768     | 42.888              | 8.118      | 73.000    |
| 1990   | 20.006   | 7.111     | 52.875              | 10.008     | 90.000    |
| 1991   | 18.990   | 6.750     | 50.190              | 9.500      | 85.430    |
| 1992   | 16.340   | 3.510     | 37.852              | 8.698      | 66.400    |
| 1993   | 8.312    | 3.726     | 65.626              | 5.512      | 83.176    |
| 1994   | 14.865   | 6.333     | 38.137              | 2.064      | 61.400    |
| 1995   | 30.759   | 12.427    | 58.766              | 11.373     | 113.325   |
| 1996   | 34.154   | 12.484    | 61.049              | 5.272      | 112.959   |
| 1997   | 28.466   | 14.235    | 52.307              | 4.130      | 99.138    |
| 1998   | 18.199   | 7.141     | 31.685              | 2.088      | 59.113    |
| 1999   | 19.001   | 7.838     | 29.189              | 2.878      | 58.906    |
| 2000   | 23.545   | 7.678     | 30.227              | 5.620      | 67.070    |
| 2001   | 23.561   | 7.798     | 35.609              | 2.694      | 69.662    |
| 2002   | 18.540   | 6.561     | 22.473              | 4.792      | 52.366    |
| 2003   | 19.606   | 6.561     | 23.765              | 5.068      | 55.000    |
| 2004   | 16.041   | 5.368     | 19.444              | 4.146      | 40.854    |
| 2005   |          |           |                     |            | 0         |
|        |          |           |                     |            | 0         |
|        |          |           |                     |            |           |
| Summe: | 493.238  | 180.516   | 1.092.475           | 175.316    | 1.937.398 |
| in %:  | 25%      | 9%        | 56%                 | 9%         | 100%      |



Anlage 4: Ingenieurangebot der Eisenlohr Energie & Umwelttechnik GmbH



#### Elseniohr Energie & Umwelttechnik GmbH

Untere Beutau 25, 73728 Esslingen

Abfallwirtschaftsbetrieb Landkreis Emsland zu Hd. Herrn Krämer Ordeniederung 1

49716 Meppen

Ihre Zeichen/Ihre Nachricht Unsere Auftrags-Nr./Zeichen Telefon

Telefax

Esslingen, den

AWB-Ems 21-1 ei

(0711) 3 65 57 91 (0711) 3 65 57 09

24. August 2021

## DEPONIE DÖRPEN, RICHTPREISANGEBOT:

## MONITORING NACH DER BAUMABNAHME. UBERWACHEN UND BERICHTSWESEN.

Sehr geehrter Herr Krämer,

bezugnehmend auf das Förderprojekt der NKI: In Situ Stabilisierung Deponie Dörpen erhalten Sie im Folgenden unseren Honorarvorschlag für das Monitoring auf der Deponie Dörpen sowie den nach NKI erforderlichen Berichten für die PTJ.

Wir werden die Deponie schrittweise in den Schwachgasbetrieb führen, dabei ist uns insbesondere wichtig die Entgasungsanlage in der Einfahrphase wöchentlich einzustellen und zu überwachen.

Nach unseren Erfahrungen ist es nicht sinnvoll die Gasmenge zu schnell zu steigern. Einen optimalen Austrag an Kohlenwasserstoffen ist nur im gering teilaeroben Betrieb möglich.

Hierzu werden wir die Gasmengen an den einzelnen Gasbrunnen zunächst nur bis zu einem CH<sub>4</sub>/CO<sub>2</sub> Verhältnis von 1/1 steigern.

Folgende Leistungen sind bis zum Ende der Förderung notwendig:

Pos. 1 Ingenieurtechnische Ausführung der Einstellung des Schwachgasbetriebs 1-2 wöchentliche Kontrolle und Einstellung der Entgasungsanlage bis zu einem stabilen Betriebszustandes (bis längstens 3 Monate). einschließlich 1 x LAS Messungen.

Aufwand ca. 10 Messungen vor Ort

17.000,--

Pos. 2 Erstellung eines Zwischenberichts und eines Abschlussberichts nach NKI Finschließlich Nachweis der Emissionsziele.

3,000,--

| Summe (netto)        | € | 20.000, |
|----------------------|---|---------|
| zzgl. 19 % MwSt.     | € | 3.800,  |
| Gesamtsumme (brutto) | € | 23.800, |



Ich hoffe unser Vorschlag entspricht Ihren Vorstellungen; für etwaige Rückfragen stehen wir selbstverständlich jederzeit gerne zur Verfügung.

Mit freundlichen Grüßen

Martin EisenJohr



Anlage 5: Messprotokolle Blatt Nr. 1-8

# Zentrale Gassammelstelle

# Messprotokoll Blatt-Nr.1

| Datum:   13.10.2020   24.11.2020   bewölkt   bewölt   bewölt   10 °   6 °   1025   logo   l | ung **) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Luftdruck:   10 °   6 °   1025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ung **) |
| Lufttemperatur:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ung **) |
| Luftdruck:   1023   1025     Protokoll                         Protokoll                       Rothan CH4   (Vol%)                 Kohlendioxid CO2   (Vol%)               Sauerstoff O2   (Vol%)               H2S   ppm                 Durchfluß Q   (Nm³/h)               Klappe   (°)                 Temperatur   (°C)               Analyse   Methan CH4   (Vol%)                   Kohlendioxid CO2   (Vol%)                   Kohlendioxid CO2   (Vol%)                   Durchfluß   Q   (m³/h)                   Durchfluß   Q alt   (m³/h)                   Durchfluß   Q alt   (m³/h)                   Fackel   Q neu   (m³/h)                     Durchfluß   Q neu   (m³/h)                     Durchfluß   Q neu   (m³/h)                     Durchfluß   Q neu   (m³/h)                         Durchfluß   Q neu   (m³/h)                               Durchfluß   Q neu   (m³/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ung **) |
| Protokoll   Böhr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ung **) |
| Methan CH4   (Vol%)   (Vol%                                                                                                                                                                                                                                                                                                                                                                                   | ung **  |
| Methan CH <sub>4</sub>   (Vol%)   (Kohlendioxid CO <sub>2</sub>   (Vol%)   (Vol.                                                                                                                                                                                                                                                                                                                                                         | ung **) |
| HGS   Kohlendioxid CO2   (Vol%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
| HGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| H2S   ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |
| HGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| HGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| Durchfluß Q   (Nm³/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
| Klappe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |
| Temperatur (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
| Analyse         Methan CH <sub>4</sub> (Vol%)         17 / 19         22,4           Kohlendioxid CO2 (Vol%)         1,4 / 1,2         0,0           Sauerstoff O <sub>2</sub> (Vol%)         1,4 / 1,2         0,0           H2S ppm         0         0           P th         (KW)         0           Durchfluß         Q alt (m³/h)         0           Fackel         Q neu         (m³/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| Kohlendioxid CO2   (Vol%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |
| Sauerstoff O2   (Vol%)   1,4 / 1,2   0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |
| H2S   ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |
| H2S   ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |
| Durchfluß         Q         (m³/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |
| P th         (KW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |
| Durchfluß         Q alt         (m³/h)           Fackel         Q neu         (m³/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |
| Fackel Q neu (m³/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
| 3 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
| Durchfluß   Q Messung   (Nm³/h)   89,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |
| Gesamt Q Anzeige (m³/h) 100 100,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |
| Methan CH₄ (Vol%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |
| Kohlendioxid CO <sub>2</sub> (Vol%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| Sauerstoff O <sub>2</sub> (Vol%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| H2S ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
| Durchfluß Q (m³/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
| -   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
| Kohlendioxid CO <sub>2</sub> (Vol%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| Sauerstoff $O_2$ (Vol%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
| H2S ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
| Durchfluß Q (Nm³/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| Klappe (°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
| Methan CH₄ (Vol%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |
| Kohlendioxid CO <sub>2</sub> (Vol%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| Sauerstoff O <sub>2</sub> (Vol%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
| H2S ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
| Durchfluß Q (Nm³/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| Klappe (°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
| Methan CH₄ (Vol%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |
| Kohlendioxid CO <sub>2</sub> (Vol%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| Sauerstoff O <sub>2</sub> (Vol%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| H2S ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
| Durchfluß Q (Nm³/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| Klappe (°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
| Kohlendioxid CO <sub>2</sub> (Vol%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| Sauerstoff O <sub>2</sub> (Vol%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| H2S ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
| Durchfluß Q (Nm³/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| Klappe (°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
| Durchmesser DN 50 / 150 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |

Durchmesser DN 50/150 mm

\*) 1. Messung vor Einregulierung

\*\*) 2. Messung nach Einregulierung

# Zentrale Gassammelstelle

# Messprotokoll Blatt-Nr.2

|                    | 1                                |                      | 1        |                |              |               |
|--------------------|----------------------------------|----------------------|----------|----------------|--------------|---------------|
|                    | Datum:                           |                      | 24.02    | .2021          |              |               |
|                    | Wetter:                          |                      |          | nnig           |              |               |
|                    | Lufttemperatu                    | ır:                  | 10       | ) °            |              |               |
|                    | Luftdruck:                       |                      | 10       | 30             |              |               |
|                    | Protokoll                        |                      | 41       | ähr            |              |               |
|                    | 1.0.0.0.                         |                      |          | 2. Messung **) | 1 Massung *) | 2 Massuna **) |
|                    | Methan CH₄                       | (Vol%)               |          | z. Messurig    | 1. Messarig  | 2. Messarig ) |
|                    |                                  | (VOI%)               |          |                |              |               |
|                    | _                                | ` ,                  |          |                |              |               |
|                    |                                  | (Vol%)               |          |                |              |               |
|                    | H2S                              | ppm                  |          |                |              |               |
| HGS                | Druck p                          | (mbar)               |          |                |              |               |
|                    |                                  | $(Nm^3/h)$           |          |                |              |               |
|                    | Klappe                           | (°)                  |          |                |              |               |
|                    | Temperatur                       | (°C)                 |          |                |              |               |
| Analyse            | Methan CH₄                       | (Vol%)               | 16,0     | 16,0           |              |               |
| -                  | Kohlendioxid CO2                 | (Vol%)               |          |                |              |               |
|                    | Sauerstoff O <sub>2</sub>        | (Vol%)               | 0,6      | 0,4            |              |               |
|                    | H2S                              | ppm                  | ,        |                |              |               |
| Durchfluß          | Q                                | $(m^3/h)$            |          |                |              |               |
| Baionilab          | P th                             | (KW)                 |          |                |              |               |
| Durchfluß          | Q alt                            |                      |          |                |              |               |
|                    |                                  | $(m^3/h)$            | -        |                |              |               |
| Fackel             | Q neu                            | $(m^3/h)$            |          | /7/            |              |               |
| Durchfluß          |                                  | $(Nm^{3}/h)$         |          | 67,6           |              |               |
| Gesamt             | Q Anzeige                        | (m <sup>3</sup> /h)  | 100      | 100            |              |               |
|                    | Methan CH₄                       | (Vol%)               |          |                |              |               |
|                    |                                  | (Vol%)               |          |                |              |               |
|                    | Sauerstoff O <sub>2</sub>        | (Vol%)               |          |                |              |               |
|                    | H2S                              | ppm                  |          |                |              |               |
|                    | Durchfluß Q                      | $(m^3/h)$            |          |                |              |               |
|                    | Klappe                           | (°)                  |          |                |              |               |
|                    | Klappe<br>Methan CH <sub>4</sub> | (Vol%)               |          |                |              |               |
|                    |                                  | (Vol%)               |          |                |              |               |
|                    | Sauerstoff O <sub>2</sub>        | (Vol%)               |          |                |              |               |
|                    | H2S                              | ppm                  |          |                |              |               |
|                    | Durchfluß Q                      | $(Nm^3/h)$           |          |                |              |               |
|                    |                                  | (°)                  | 1        |                |              |               |
|                    | Klappe<br>Methan CH₄             | (Vol%)               |          |                |              |               |
|                    |                                  | ,                    |          |                |              |               |
|                    |                                  | (Vol%)               |          |                |              |               |
|                    | Sauerstoff O <sub>2</sub>        | (Vol%)               | <b> </b> |                |              |               |
|                    | H2S                              | ppm                  |          |                |              |               |
|                    | Durchfluß Q                      | (Nm³/h)              |          |                |              |               |
|                    | Klappe                           | (°)                  |          |                |              |               |
|                    | Methan CH₄                       | (Vol%)               |          |                |              |               |
|                    |                                  | (Vol%)               |          |                |              |               |
|                    | Sauerstoff O <sub>2</sub>        | (Vol%)               |          |                |              |               |
|                    | H2S                              | ppm                  |          |                |              |               |
|                    | Durchfluß Q                      | (Nm³/h)              |          |                |              |               |
|                    | Klappe                           | (°)                  |          |                |              |               |
|                    | Methan CH₄                       | (Vol%)               |          |                |              |               |
|                    |                                  | (Vol%)               |          |                |              |               |
|                    | Sauerstoff $O_2$                 | (Vol%)               |          |                |              |               |
|                    | H2S                              | <u> </u>             | 1        |                |              |               |
|                    |                                  | ppm                  | <b> </b> |                |              | <u> </u>      |
|                    | Durchfluß Q                      | (Nm <sup>3</sup> /h) | <b> </b> |                |              |               |
|                    | Klappe                           | (°)                  |          |                |              | <u> </u>      |
| Durchmesser DN 50/ | 150 mm                           |                      |          |                |              |               |

\*) 1. Messung vor Einregulierung

\*\*) 2. Messung nach Einregulierung

Dezentrale Gassammelstelle GS I

Messprotokoll Blatt-Nr. 3

|                         | D = J                                 | 1                    | 12 10 0000   | 04110000     | 04.00.0003   | Vorter       |
|-------------------------|---------------------------------------|----------------------|--------------|--------------|--------------|--------------|
|                         | Datum<br>Mothan CH                    | ()/61 ()/            | 13.10.2020   | 24.11.2020   | 24.02.2021   | Kopfmessung  |
|                         | Methan CH <sub>4</sub>                | (Vol%)               |              | 38,5         | 18,0         | 18,0         |
| 1/1 0                   |                                       | (Vol%)               |              | 27,7         | 24,4         | 24,4         |
| l/1.8                   | Sauerstoff O <sub>2</sub>             | (Vol%)               | 0,0          | 0,0          | 0,0          | 0,0          |
| Konfmessing 04 00 03    | Durchfluß Q                           | (Nm <sup>3</sup> /h) |              | 3,0          | 3,3          | 00           |
| Kopfmessung 24.02.21    | Klappe<br>Methan CH₄                  | (°)<br>(Vol%)        | 30           | 30           | 30           | 90           |
|                         | · · · · · · · · · · · · · · · · · · · | (VOI%)<br>(VOI%)     | 10,2<br>17,9 | 6,7<br>19,3  | 4,0<br>11,3  | 1,2<br>8,0   |
| I/3                     | Sauerstoff $O_2$                      | (VOI%)               | 1,7          | 0,0          | 8,2          | 11,2         |
| <b>"</b> ,3             | Durchfluß Q                           | $(Nm^3/h)$           |              | 1>0          | 0,0          | 0,0          |
| Kopfmessung 24.02.21    | Klappe                                | (°)                  | 30           | 30>0         | 30 > 0       | 90           |
| Reparticularly 24.02.21 | Methan CH₄                            | (Vol%)               | 3,8          | 00/0         | 00 / 0       | 0,1          |
|                         |                                       | (Vol%)               | 4,7          |              |              | 0,8          |
| l/4                     | Sauerstoff O <sub>2</sub>             | (Vol. 70)            | 12,6         |              |              | 20,0         |
| "-                      | Durchfluß Q                           | (Nm <sup>3</sup> /h) | 4,8>0        | 0,0          | 0,0          | 23,3         |
| Kopfmessung 13.10.20    | Klappe                                | (°)                  | 90>0         | 0            | 0            | 90           |
|                         | Methan CH <sub>4</sub>                | (Vol%)               | 25,4         |              |              | nicht        |
|                         | Kohlendioxid CO <sub>2</sub>          | ,                    |              |              |              | auffindbar   |
| I/5                     | Sauerstoff O <sub>2</sub>             | (Vol%)               | 2,9          |              |              |              |
| ,, -                    | Durchfluß Q                           | (Nm <sup>3</sup> /h) | 5,7>0        | 0,0          | 0,0          |              |
|                         | Klappe                                | (°)                  | 90>0         | 0            | 0            |              |
|                         | Methan CH₄                            | (Vol%)               | 25,2         | 28,7         | 9,2          | 7,4          |
|                         | Kohlendioxid CO <sub>2</sub>          | (Vol%)               | 24,1         | 24,4         | 20,1         | 14,8         |
| l/2                     | Sauerstoff O <sub>2</sub>             | (Vol%)               | 0,0          | 0,0          | 0,7          | 1,6          |
|                         | Durchfluß Q                           | (Nm <sup>3</sup> /h) | 4,1          | 9>5          | 7,7 > 5      | 0,0          |
| Kopfmessung 24.02.21    | Klappe                                | (°)                  | 30           | 30>25        | 25 > 20      | 90           |
|                         | Methan CH₄                            | (Vol%)               | 13,9         |              |              | 23,3         |
|                         |                                       | (Vol%)               | 13,6         |              |              | 25,3         |
| 1/6                     | Sauerstoff O <sub>2</sub>             | (Vol%)               |              |              |              | 2,2          |
|                         | Durchfluß Q                           | $(Nm^3/h)$           |              | 0,0          | 0,0          |              |
| Kopfmessung 13.10.20    | Klappe                                | (°)                  | 90>0         | 0            | 0            | 90           |
|                         | Methan CH <sub>4</sub>                | (Vol%)               | 18,3         | 51,7         | 11,0         | 45,7         |
| .,-                     |                                       | (Vol%)               | 16,7         | 32,8         | 21,0         | 27,8         |
| l/7                     | Sauerstoff O <sub>2</sub>             | (Vol%)               | 0,0          | 0,0          | 0,0          | 2,6          |
| Kopfmessung 13.10.20    | Durchfluß Q                           | (Nm <sup>3</sup> /h) |              | 4,0          | 4,0          | 00           |
| ROPITIESSUITG 13.10.20  | Klappe<br>Methan CH₄                  | (°)<br>(Vol%)        | 90>30        | 30           | 30           | 90           |
|                         |                                       | (VOI%)               | -            | 28,4<br>27,0 | 22,5<br>23,2 | 24,0<br>26,8 |
| l/1                     | Sauerstoff O <sub>2</sub>             | (Vol%)               | 0,1          | 0,0          | 0,0          | 0,0          |
| "'                      | Durchfluß Q                           | $(Nm^3/h)$           | 1            | 1,4          | 2,2          | 0,0          |
| Kopfmessung 24.02.21    | Klappe                                | (°)                  | 30           | 24           | 24           | 90           |
| ,                       | Methan CH <sub>4</sub>                | (Vol%)               | 55           | <u> </u>     |              | , ,          |
|                         |                                       | (Vol%)               |              |              |              |              |
|                         | Sauerstoff O <sub>2</sub>             | (Vol%)               |              |              |              |              |
|                         | Durchfluß Q                           | (Nm <sup>3</sup> /h) |              |              |              |              |
|                         | Klappe                                | (°)                  |              |              |              |              |
|                         | Methan CH₄                            | (Vol%)               |              |              |              |              |
|                         | -                                     | (Vol%)               |              |              |              |              |
|                         | Sauerstoff O <sub>2</sub>             | (Vol%)               |              |              |              |              |
|                         | Durchfluß Q                           | (Nm <sup>3</sup> /h) |              |              |              |              |
|                         | Klappe                                | (°)                  |              |              |              |              |
|                         | Methan CH₄                            | (Vol%)               | 28,8         | -            | 13,5         |              |
|                         | Kohlendioxid CO <sub>2</sub>          | (Vol%)               | 26,4         | -            | 20,8         |              |
| Abgang                  | Sauerstoff O <sub>2</sub>             | (Vol%)               |              | -            | 0,7          |              |
| , g <del></del> g       | Druck                                 | (mbar)               | -3,0         | _            | ,-           | 1            |
|                         |                                       | , ,                  |              | <u> </u>     | 145          | -            |
|                         | Durchfluß Q                           | (Nm <sup>3</sup> /h) |              | -            | 14,5         | -            |
|                         | Klappe                                | (°)                  | 90           | -            | 90           |              |

Durchmesser DN 50/150 mm

Dezentrale Gassammelstelle GS II/2

Messprotokoll Blatt-Nr. 4

|                        | <u> </u>                                |                              | 10.10.202                                          |            | 0400000    | 10.0                                             |
|------------------------|-----------------------------------------|------------------------------|----------------------------------------------------|------------|------------|--------------------------------------------------|
|                        | <u>Datum</u>                            | 0 / 1 0 / 1                  | 13.10.2020                                         | 24.11.2020 | 24.02.2021 | Kopfmessung                                      |
|                        | Methan CH <sub>4</sub>                  | (Vol%)                       |                                                    |            |            | 6,8                                              |
| OD 11/0 O              |                                         | (Vol%)                       |                                                    |            |            | 14,5                                             |
| GB II/2.2              | Sauerstoff O <sub>2</sub>               | (Vol%)                       |                                                    |            |            | 4,4                                              |
| Vontre 10 10 00        | Durchfluß Q                             | (Nm <sup>3</sup> /h)         |                                                    | 0,0        | 0,0        |                                                  |
| Kopfmessung 13.10.20   | Klappe<br>Mothan CH                     | (°)                          | 90>0                                               | 0          | 0          | 90                                               |
|                        | Methan CH <sub>4</sub>                  | (Vol%)                       | ·                                                  | 16,0       | 8,6        | 8,9                                              |
| CD II/O E              | Kohlendioxid $CO_2$<br>Sauerstoff $O_2$ | (Vol%)                       | ·                                                  | 18,7       | 17,5       | 17,4                                             |
| GB II/2.5              | Durchfluß Q                             | (Vol%)<br>(Nm³/h)            | -                                                  | 1,5<br>1,0 | 0,0<br>4,0 | 0,0                                              |
| Kopfmessung 24.02.21   | Klappe                                  | (°)                          | 60                                                 | 60         | 4,0<br>60  | 90                                               |
| ROPHTICOSULIS 24.02.21 | Methan CH₄                              | (Vol%)                       |                                                    | 0,0        | 00         | 12,1                                             |
|                        | -                                       | (Vol%)                       |                                                    | 1,5        |            | 10,5                                             |
| GB II/2.9              | Sauerstoff $O_2$                        | (Vol%)                       |                                                    | 19,5       |            | 9,3                                              |
| 90 II/2.7              | Durchfluß Q                             | (VOI 76)<br>$(Nm^3/h)$       |                                                    | 0,0        | 0          | <b>1</b> ,5                                      |
| Kopfmessung 24.02.21   | Klappe                                  | (°)                          | 45                                                 | 0          | 0          | 90                                               |
| ,                      | Methan CH <sub>4</sub>                  | (Vol%)                       |                                                    |            |            | 0,2                                              |
|                        |                                         | (Vol%)                       |                                                    |            |            | 0,5                                              |
| GB II/2.6              | Sauerstoff O <sub>2</sub>               | (Vol%)                       | ( <del>                                     </del> |            |            | 20,1                                             |
|                        | Durchfluß Q                             | (Nm <sup>3</sup> /h)         | ·                                                  | 0,0        | 0,0        | 1                                                |
| Kopfmessung 13.10.20   | Klappe                                  | (°)                          | 90>0                                               | 0          | 0          | 90                                               |
|                        | Methan CH₄                              | (Vol%)                       |                                                    |            |            | 22,1                                             |
|                        | Kohlendioxid CO <sub>2</sub>            | (Vol%)                       | 0,4                                                |            |            | 8,1                                              |
| GB II/2.10             | Sauerstoff O <sub>2</sub>               | (Vol%)                       | 21,2                                               |            |            | 11,6                                             |
|                        | Durchfluß Q                             | (Nm <sup>3</sup> /h)         |                                                    | 0,0        | 0,0        |                                                  |
| Kopfmessung 13.10.20   | Klappe                                  | (°)                          | 90>0                                               | 0          | 0          | 90                                               |
|                        | Methan CH <sub>4</sub>                  | (Vol%)                       |                                                    | 20,4       | 12,3       | 12,9                                             |
|                        |                                         | (Vol%)                       |                                                    | 21,7       | 18,7       | 18,7                                             |
| GB II/2.13             | Sauerstoff O <sub>2</sub>               | (Vol%)                       |                                                    | 0,0        | 0,0        | 0,0                                              |
|                        | Durchfluß Q                             | (Nm <sup>3</sup> /h)         |                                                    | 9>3        | 2,0        |                                                  |
| Kopfmessung 24.02.21   | Klappe                                  | (°)                          | 45                                                 | 45>28      | 28         | 90                                               |
|                        | Methan CH <sub>4</sub>                  | (Vol%)                       |                                                    |            |            | 22,0                                             |
| OD 11/0 10             | Kohlendioxid CO <sub>2</sub>            | , ,                          |                                                    |            |            | 14,3                                             |
| GB II/2.12             | Sauerstoff O <sub>2</sub>               | (Vol%)                       |                                                    | 0.0        | 0.0        | 6,4                                              |
| Konfmassung 04 00 01   | Durchfluß Q                             | (Nm³/h)                      | <u> </u>                                           | 0,0        | 0,0        | 100                                              |
| Kopfmessung 24.02.21   | Klappe<br>Methan CH₄                    | (°)<br>(Vol%)                | 90>0<br>40,6                                       | 0<br>25,8  | 0<br>18,2  | 90 26,3                                          |
|                        |                                         | (VOI%)                       |                                                    | 18,5       | 17,5       | 18,6                                             |
| GB II/2.11             | Sauerstoff O <sub>2</sub>               | (VOI%)                       |                                                    | 0,0        | 0,0        | 0,0                                              |
| 90 11/2.11             | Durchfluß Q                             | (VOI76) (Nm <sup>3</sup> /h) |                                                    | 9>5        | 4,2        | <del>                                     </del> |
| Kopfmessung 24.11.20   | Klappe                                  | (°)                          | 60                                                 | 60>26      | 26         | 90                                               |
| ,                      | Methan CH₄                              | (Vol%)                       |                                                    | 002 20     |            | 0,2                                              |
|                        |                                         | (Vol%)                       |                                                    |            |            | 0,5                                              |
| GB II/2.7              | Sauerstoff O <sub>2</sub>               | (Vol%)                       | <b>├</b>                                           |            |            | 21,0                                             |
|                        | Durchfluß Q                             | (Nm <sup>3</sup> /h)         | <u> </u>                                           | 0,0        | 0,0        | 1                                                |
| Kopfmessung 13.10.20   | Klappe                                  | (°)                          | 90>0                                               | 0          | 0          | 90                                               |
|                        | Methan CH₄                              | (Vol%)                       |                                                    |            |            | 18,7                                             |
|                        | Kohlendioxid CO <sub>2</sub>            | (Vol%)                       | 0,4                                                |            |            | 16,1                                             |
| GB II/2.3              | Sauerstoff O <sub>2</sub>               | (Vol%)                       |                                                    |            |            | 3,4                                              |
|                        | Durchfluß Q                             | (Nm <sup>3</sup> /h)         |                                                    | 0,0        | 0,0        |                                                  |
| Kopfmessung 13.10.20   | Klappe                                  | (°)                          | 90>0                                               | 0          | 0          | 90                                               |
|                        | Methan CH₄                              | (Vol%)                       | 34,9                                               |            | 19,3       |                                                  |
|                        | Kohlendioxid CO <sub>2</sub>            | (Vol%)                       | 22,2                                               | -          | 18,2       |                                                  |
| Abgang                 | Sauerstoff O <sub>2</sub>               | (Vol%)                       | 0,1                                                | -          | 0,0        |                                                  |
|                        | Druck                                   | (mbar)                       | ·                                                  | -          | -19,0      | 1                                                |
|                        | Durchfluß Q                             | (Nm <sup>3</sup> /h)         | ·                                                  | _          | 16,2       | 1                                                |
|                        |                                         | <u> </u>                     |                                                    | -          |            | <b> </b>                                         |
| Durchmesser DN 50 / 1  | Klappe                                  | (°)                          | 45                                                 | _          | 45         | <u>.IL</u>                                       |

Durchmesser DN 50 / 150 mm

Dezentrale Gassammelstelle GS II/2

Messprotokoll Blatt-Nr. 5

|                       | Datum                        |                      | 13.10.2020 | 24.11.2020                                       | 24.02.2021 | Kopfmessung |
|-----------------------|------------------------------|----------------------|------------|--------------------------------------------------|------------|-------------|
|                       | Methan CH₄                   | (Vol%)               |            |                                                  |            | 20,1        |
|                       |                              | (Vol%)               |            |                                                  |            | 4,9         |
| GB II/2.4             | Sauerstoff O <sub>2</sub>    | (Vol%)               | 18,0       |                                                  |            | 14,0        |
|                       | Durchfluß Q                  | (Nm <sup>3</sup> /h) |            | 0,0                                              | 0,0        |             |
| Kopfmessung 13.10.20  | Klappe                       | (°)                  | 90>0       | 0                                                | 0          | 90          |
|                       | Methan CH₄                   | (Vol%)               | 51,4       | 0,0                                              |            | 5,2         |
|                       | Kohlendioxid CO <sub>2</sub> | (Vol%)               | 18,0       | 0,0                                              |            | 2,3         |
| GB II/2.8             | Sauerstoff O <sub>2</sub>    | (Vol%)               |            | 20,8                                             |            | 18,6        |
|                       | Durchfluß Q                  | (Nm <sup>3</sup> /h) |            | 4>0                                              | 0,0        |             |
| Kopfmessung 24.11.20  | Klappe                       | (°)                  | 60         | 45>0                                             | 0          | 90          |
|                       | Methan CH₄                   | (Vol%)               | 39,9       | 44,1                                             | 29,3       | 30,9        |
| <b></b>               | Kohlendioxid CO <sub>2</sub> | (Vol%)               | 22,7       | 21,9                                             | 18,2       | 18,7        |
| GB II/2.1             | Sauerstoff O <sub>2</sub>    | (Vol%)               | 0,0        | 0,1                                              | 0,0        | 0,0         |
|                       | Durchfluß Q                  | (Nm <sup>3</sup> /h) |            | 9>5                                              | 6          |             |
| Kopfmessung 24.02.21  | Klappe                       | (°)                  | 60         | 60>40                                            | 40         | 90          |
|                       | Methan CH <sub>4</sub>       | (Vol%)               |            | ļ                                                |            |             |
|                       | Kohlendioxid CO <sub>2</sub> | (Vol%)               |            |                                                  |            |             |
|                       | Sauerstoff O <sub>2</sub>    | (Vol%)               |            |                                                  |            |             |
|                       | Durchfluß Q                  | (Nm³/h)              |            |                                                  |            |             |
|                       | Klappe<br>Methan CH₄         | (°)<br>(Vol%)        |            |                                                  |            | <u> </u>    |
|                       | Kohlendioxid CO <sub>2</sub> | (VOI%)<br>(VOI%)     |            | <del>  </del>                                    |            | -           |
|                       | Sauerstoff $O_2$             | (VOI%)               |            | <del>                                     </del> |            |             |
|                       | Durchfluß Q                  | (VOI%)<br>(Nm³/h)    |            |                                                  |            | <u> </u>    |
|                       | Klappe                       | (°)                  |            |                                                  |            |             |
|                       | Methan CH <sub>4</sub>       | (Vol%)               |            |                                                  |            |             |
|                       | Kohlendioxid CO <sub>2</sub> | (Vol%)               |            |                                                  |            |             |
|                       | Sauerstoff O <sub>2</sub>    | (Vol%)               |            |                                                  |            |             |
|                       | Durchfluß Q                  | $(Nm^3/h)$           |            |                                                  |            |             |
|                       | Klappe                       | (°)                  |            |                                                  |            |             |
|                       | Methan CH₄                   | (Vol%)               |            |                                                  |            |             |
|                       | Kohlendioxid CO <sub>2</sub> |                      |            |                                                  |            |             |
|                       | Sauerstoff O <sub>2</sub>    | (Vol%)               |            |                                                  |            |             |
|                       | Durchfluß Q                  | $(Nm^3/h)$           |            |                                                  |            |             |
|                       | Klappe                       | (°)                  |            |                                                  |            |             |
|                       | Methan CH <sub>4</sub>       | (Vol%)               |            |                                                  |            |             |
|                       | Kohlendioxid CO <sub>2</sub> | (Vol%)               |            |                                                  |            |             |
|                       | Sauerstoff $O_2$             | (Vol%)               |            |                                                  |            |             |
|                       | Durchfluß Q                  | (Nm <sup>3</sup> /h) |            |                                                  |            |             |
|                       | Klappe                       | (°)                  |            |                                                  |            |             |
|                       | Methan CH <sub>4</sub>       | (Vol%)               |            |                                                  |            |             |
|                       | Kohlendioxid CO <sub>2</sub> | (Vol%)               |            |                                                  |            |             |
|                       | Sauerstoff O <sub>2</sub>    | (Vol%)               |            |                                                  |            |             |
|                       | Durchfluß Q                  | $(Nm^3/h)$           |            |                                                  |            |             |
|                       | Klappe                       | (°)                  |            |                                                  |            |             |
|                       | Methan CH <sub>4</sub>       | (Vol%)               |            | ļ                                                |            |             |
|                       | Kohlendioxid CO <sub>2</sub> | (Vol%)               |            | ļ                                                |            |             |
|                       | Sauerstoff O <sub>2</sub>    | (Vol%)               |            | ļ                                                |            |             |
|                       | Durchfluß Q                  | (Nm³/h)              |            |                                                  |            |             |
|                       | Klappe<br>Mathan CU          | (°)                  |            |                                                  |            | <u> </u>    |
|                       | Methan CH <sub>4</sub>       | (Vol%)               |            |                                                  |            | <b> </b>    |
|                       | Kohlendioxid CO <sub>2</sub> | (Vol%)               |            |                                                  |            |             |
| Abgang                | Sauerstoff $O_2$             | (Vol%)               |            |                                                  |            |             |
|                       | Durchfluß Q                  | (Nm <sup>3</sup> /h) |            |                                                  |            |             |
|                       | Klappe                       | (°)                  |            |                                                  |            |             |
| Durchmesser DN 50 / 1 |                              | /                    | i          |                                                  |            | -           |

Durchmesser DN 50 / 150 mm

## Deponie Dörpen - Fremdkontrolle der Entgasung Wirkungskontrolle 2020/2021

Dezentrale Gassammelstelle GS II/1

Messprotokoll Blatt-Nr. 6

|                           | D-J                                                    | 1                           | 12 10 0000   | 04110000    | 04.00.0003  | Vorter      |
|---------------------------|--------------------------------------------------------|-----------------------------|--------------|-------------|-------------|-------------|
|                           | Datum  Mothan CH                                       | 0/01 0/0                    | 13.10.2020   | 24.11.2020  | 24.02.2021  | Kopfmessung |
|                           | Methan CH <sub>4</sub><br>Kohlendioxid CO <sub>2</sub> | (Vol%)                      |              | 30,8        | 18,0        | 29,8        |
| CD 11/1 2                 |                                                        | (Vol%)                      |              | 23,0<br>0,0 | 19,0<br>0,0 | 22,0        |
| GB II/1.2                 | Sauerstoff $O_2$ Durchfluß $Q$                         | (Vol%)                      | 0,1          | 5<9         |             | 0,0         |
| Kopfmessung 24.11.20      |                                                        | (Nm <sup>3</sup> /h)<br>(°) | 4,2<br>45    | 5<9<br>45   | 8,6<br>45   | 90          |
| ROPHTIESSUING 24.11.20    | Klappe<br>Methan CH₄                                   | (Vol%)                      | 0,3          | 40          | 40          | 8,8         |
|                           | •                                                      | (VOI%)                      |              |             |             | 7,6         |
| GB II/1.4                 | Sauerstoff $O_2$                                       | (Vol%)                      | 18,7         |             |             | 16,0        |
| 90 11/1.4                 | Durchfluß Q                                            | $(Nm^3/h)$                  |              | 0,0         | 0,0         | 10,0        |
| Kopfmessung 24.02.21      | Klappe                                                 | (°)                         | 90>0         | 0           | 0,0         | 90          |
| Repirriessarig 24/62/21   | Methan CH₄                                             | (Vol%)                      | 7,9          | Ŭ           | <u> </u>    | 7,7         |
|                           |                                                        | (Vol. 70)                   | 12,6         |             |             | 13,1        |
| GB II/1.10                | Sauerstoff O <sub>2</sub>                              | (Vol. 76)                   | 6,1          |             |             | 6,4         |
|                           | Durchfluß Q                                            | (Nm <sup>3</sup> /h)        | 6>0          | 0,0         | 0           | 0           |
| Kopfmessung 24.02.21      | Klappe                                                 | (°)                         | 90>0         | 0           | 0           | 90          |
|                           | Methan CH <sub>4</sub>                                 | (Vol%)                      | 26,9         | 19,6        | 10,5        | 11,2        |
|                           | Kohlendioxid CO <sub>2</sub>                           | ` ,                         |              | 20,4        | 19,3        | 19,4        |
| GB II/1.7                 | Sauerstoff O <sub>2</sub>                              | (Vol%)                      | 0,0          | 0,0         | 0,0         | 0,0         |
|                           | Durchfluß Q                                            | $(Nm^3/h)$                  | 8,6          | 6,0         | 3,9         |             |
| Kopfmessung 24.02.21      | Klappe                                                 | (°)                         | 45           | 28          | 28          | 90          |
|                           | Methan CH₄                                             | (Vol%)                      | 25,2         | 20,1        | 12,1        | 11,3        |
|                           | Kohlendioxid CO <sub>2</sub>                           | (Vol%)                      | 21,1         | 20,7        | 19,2        | 18,3        |
| GB II/1.5                 | Sauerstoff O <sub>2</sub>                              | (Vol%)                      | 0,0          | 0,0         | 0,0         | 0,0         |
|                           | Durchfluß Q                                            | (Nm <sup>3</sup> /h)        | 3,1          | 3,0         | 1,6         |             |
| Kopfmessung 24.02.21      | Klappe                                                 | (°)                         | 45           | 45          | 45          | 90          |
|                           | Methan CH₄                                             | (Vol%)                      | 27,6         | 12,9        | 7,8         | 8,1         |
| <b>25</b> !! ! 5          |                                                        | (Vol%)                      | 20,8         | 19,6        | 18,1        | 18,9        |
| GB II/1.8                 | Sauerstoff O <sub>2</sub>                              | (Vol%)                      |              | 0,0         | 0,0         | 0,0         |
|                           | Durchfluß Q                                            | (Nm <sup>3</sup> /h)        |              | 2,0         | 1,6         |             |
| Kopfmessung 24.02.21      | Klappe<br>Mathan CU                                    | (°)                         | 45           | 24          | 24          | 90          |
|                           | Methan CH <sub>4</sub>                                 | (Vol%)                      | 16,6         |             |             | 8,1         |
| CD 11/1 C                 | Kohlendioxid CO <sub>2</sub> Sauerstoff O <sub>2</sub> | (Vol%)                      | 14,1         | <u> </u>    |             | 8,0         |
| GB II/1.9                 | Durchfluß Q                                            | (Vol%)                      | 1,2<br>6,8>0 | 0,0         | 0,0         | 12,4        |
| Kopfmessung 13.10.20      | Klappe                                                 | (Nm³/h)<br>(°)              | 90>0         | 0,0         | 0,0         | 90          |
| ROPHTICSSURING TO, TO, 20 | Methan CH₄                                             | (Vol%)                      |              | 11,0        | 11,0        | 12,2        |
|                           | Kohlendioxid CO <sub>2</sub>                           | ,                           | _            | 18,8        | 18,5        | 18,8        |
| GB II/1.6                 | Sauerstoff O <sub>2</sub>                              | (Vol%)                      | 0,0          | 0,0         | 0,0         | 0,0         |
|                           | Durchfluß Q                                            | $(Nm^3/h)$                  | 6            | 2,0         | 0 < 1,0     | 0,0         |
| Kopfmessung 24.02.21      | Klappe                                                 | (°)                         | 45           | 24          | 24 < 26     | 90          |
| . 5                       | Methan CH <sub>4</sub>                                 | (Vol%)                      | 22,7         | 22,7        | 15,2        | 16,3        |
|                           |                                                        | (Vol%)                      | 20,1         | 17,5        | 17,0        | 17,3        |
| GB II/1.3                 | Sauerstoff O <sub>2</sub>                              | (Vol%)                      | 0,0          | 0,0         | 0,1         | 0,0         |
|                           | Durchfluß Q                                            | $(Nm^3/h)$                  | 8,2          | 4,0         | 1,8         |             |
| Kopfmessung 24.02.21      | Klappe                                                 | (°)                         | 60           | 30          | 30          | 90          |
|                           | Methan CH₄                                             | (Vol%)                      | 19,8         |             |             | 7,6         |
|                           |                                                        | (Vol%)                      | 13,8         |             |             | 8,4         |
| GB II/1.1                 | Sauerstoff O <sub>2</sub>                              | (Vol%)                      | 7,5          |             |             | 12,8        |
|                           | Durchfluß Q                                            | (Nm <sup>3</sup> /h)        | 7>0          | 0,0         | 0,0         |             |
| Kopfmessung 24.02.21      | Klappe                                                 | (°)                         | 90>0         | 0           | 0           | 90          |
|                           | Methan CH₄                                             | (Vol%)                      |              | -           | 13,1        |             |
|                           | Kohlendioxid CO <sub>2</sub>                           | (Vol%)                      | 20,8         | -           | 18,9        |             |
| Abgang                    | Sauerstoff O <sub>2</sub>                              | (Vol%)                      | 0,3          | -           | 0,0         |             |
|                           | Druck                                                  | (mbar)                      | -3,0         | -           | -5,0        |             |
|                           | Durchfluß Q                                            | (Nm <sup>3</sup> /h)        |              | _           | 18,5        | 1           |
|                           |                                                        |                             | 45           | -           | 45          | 1           |
|                           | Klappe<br>50. mm                                       | (°)                         | 40           | -           | 40          | <u> </u>    |

Durchmesser DN 50 / 150 mm

## Deponie Dörpen - Fremdkontrolle der Entgasung Wirkungskontrolle 2020/2021

Dezentrale Gassammelstelle GS III/1

Messprotokoll Blatt-Nr. 7

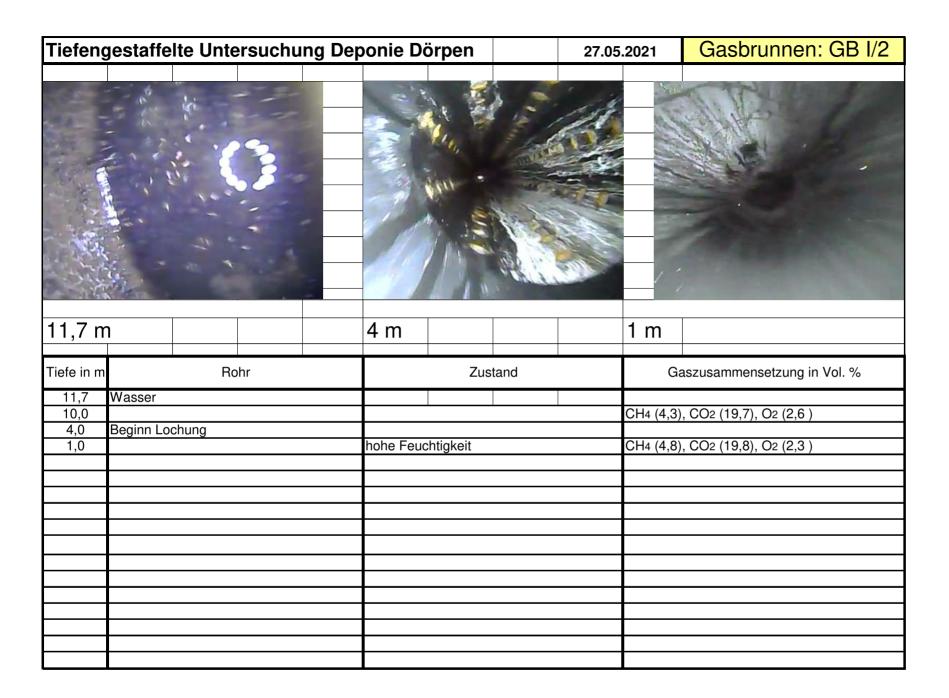
|                       | Datum                                 |                      | 13.10.2020 | 24.11.2020   | 24.02.2021 | Kopfmessung |
|-----------------------|---------------------------------------|----------------------|------------|--------------|------------|-------------|
|                       |                                       | (Vol%)               |            | 14,5         |            | 66,9        |
|                       | Kohlendioxid CO <sub>2</sub>          | , ,                  |            | 9,3          |            | 34,5        |
| III/1.3               |                                       | (Vol%)               |            | 15,8         |            | 0,0         |
|                       | Durchfluß Q                           | (Nm <sup>3</sup> /h) |            | 0,0          | 0,0        |             |
|                       | Klappe                                | (°)                  | 90>0       | 0            | 0          | 90          |
|                       | Methan CH <sub>4</sub>                | (Vol%)               |            | 22,3         | 0,0        | 26,9        |
|                       |                                       | (Vol%)               |            | 17,5         | 1,2        | 26,6        |
| III/1.1               |                                       | (Vol%)               |            | 3,5          | 20,0       | 0,0         |
|                       | Durchfluß Q                           | $(Nm^3/h)$           |            | 0,0          | 0,0        | 1           |
|                       | Klappe                                | (°)                  | 90>0       | 0            | 0          | 90          |
|                       | Methan CH <sub>4</sub>                | (Vol%)               |            | 0,0          |            | 46,1        |
| ,                     |                                       | (Vol%)               |            | 0,0          |            | 31,0        |
| III/1.2               | _                                     | (Vol%)               |            | 20,1         | -          | 0,0         |
|                       | Durchfluß Q                           | (Nm <sup>3</sup> /h) |            | 0,0          | 0,0        |             |
|                       | Klappe                                | (°)                  | 90>0       | 0            | 0          | 90          |
|                       | Methan CH <sub>4</sub>                | (Vol%)               |            | 4,5          |            | 29,4        |
| ,,-                   |                                       | (Vol%)               |            | 17,0         |            | 23,5        |
| III/1. <i>7</i>       | Sauerstoff O <sub>2</sub>             | (Vol%)               |            | 5,0          | -          | 0,0         |
|                       | Durchfluß Q                           | (Nm <sup>3</sup> /h) |            | 0,0          | 0,0        |             |
|                       | Klappe                                | (°)                  | 90>0       | 0            | 0          | 90          |
|                       | Methan CH <sub>4</sub>                | (Vol%)               |            | 6,5          |            | 58,8        |
| ,                     | Kohlendioxid CO <sub>2</sub>          |                      |            | 15,6         |            | 28,0        |
| III/1.8               |                                       | (Vol%)               |            | 5,5          | 2.5        | 0,0         |
|                       | Durchfluß Q                           | (Nm <sup>3</sup> /h) |            | 0,0          | 0,0        | -           |
|                       | Klappe                                | (°)                  | 60         | 0            | 0          | 10.5        |
|                       |                                       | (Vol%)               |            | 15,5         |            | 60,0        |
| ,,-                   |                                       | (Vol%)               |            | 17,2         |            | 36,1        |
| III/1.6               |                                       | (Vol%)               |            | 9,5          | 2.5        | 1,0         |
|                       |                                       | (Nm³/h)              |            | 0,0          | 0,0        |             |
|                       | Klappe                                | (°)                  | 0<45       | 0            | 0          | 90          |
|                       | Methan CH <sub>4</sub>                | (Vol%)               |            | 51,1         | 66,0       | 71,5        |
| ,/-                   |                                       | (Vol%)               |            | 25,2         | 34,0       | 28,1        |
| III/1.5               | Sauerstoff O <sub>2</sub>             | (Vol%)               |            | 5,2          | 0,0        | 0,0         |
|                       | Durchfluß Q                           | (Nm <sup>3</sup> /h) |            | 1,5          | 4,5 < 5,6  |             |
|                       | Klappe<br>Mathan CH                   | (°)                  | 90>0       | 30           | 30 < 36    | 90          |
|                       | Methan CH <sub>4</sub>                | (Vol%)               | 0,2        | 0,0          |            | 36,0        |
| JII /7 4              |                                       | (Vol%)               |            | 0,0          |            | 25,6        |
| III/1. <b>4</b>       | Sauerstoff O <sub>2</sub>             | (Vol%)               |            | 20,6         | 0.0        | 0,0         |
|                       |                                       | (Nm <sup>3</sup> /h) |            | 0,0          | 0,0        |             |
|                       | Klappe<br>Methan CH                   | (°)                  | 90>0       | 0            | 0          | 90          |
|                       | Methan CH <sub>4</sub>                | (Vol%)               |            | 28,1         | 19,5       | 20,0        |
| III/1 A               |                                       | (Vol%)               |            | 24,4         | 23,5       | 22,9        |
| III/1. <del>9</del>   | Sauerstoff O <sub>2</sub>             | (Vol%)               |            | 1,0          | 2,7        | 1,7         |
|                       | Durchfluß Q                           | (Nm <sup>3</sup> /h) |            | 6,0<br>45    | 12,8       | - 00        |
|                       | Klappe<br>Methan CH                   | (°)                  | 60         | 45           | 45         | 90          |
|                       |                                       | (Vol%)               |            |              |            | 1           |
|                       | Kohlendioxid CO <sub>2</sub>          | -                    |            |              |            | 1           |
|                       | Sauerstoff O <sub>2</sub> Durchfluß Q | (Vol%)               |            |              |            | 1           |
|                       |                                       | (Nm³/h)              |            | <del> </del> |            | 1           |
|                       | Klappe<br>Methan CH.                  | (°)                  | 12 4/15 1  | <u> </u>     | 07.1       | 1           |
|                       | Methan CH <sub>4</sub>                | (Vol%)               |            | <del>-</del> | 27,1       | 1           |
| ••                    |                                       | (Vol%)               |            | -            | 23,6       | -           |
| Abgang                | Sauerstoff O <sub>2</sub>             | (Vol%)               | 5,0/5,1    | -            | 2,6        |             |
|                       | Druck                                 | (mbar)               | -3,0       | -            |            |             |
|                       | Durchfluß Q                           | $(Nm^3/h)$           |            | -            | 18,4       |             |
|                       | Klappe                                | (°)                  | 45         | _            | 45         | 1           |
| Durchmesser DN 50 / 1 | *                                     | U                    |            | <u></u>      | -10        | <u> </u>    |

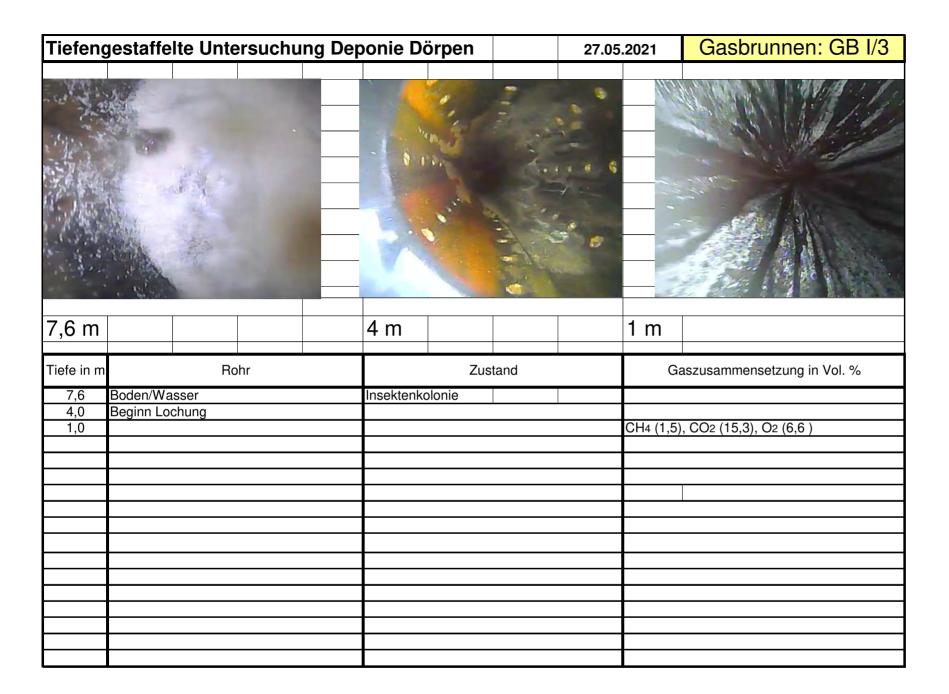
Durchmesser DN 50 / 150 mm

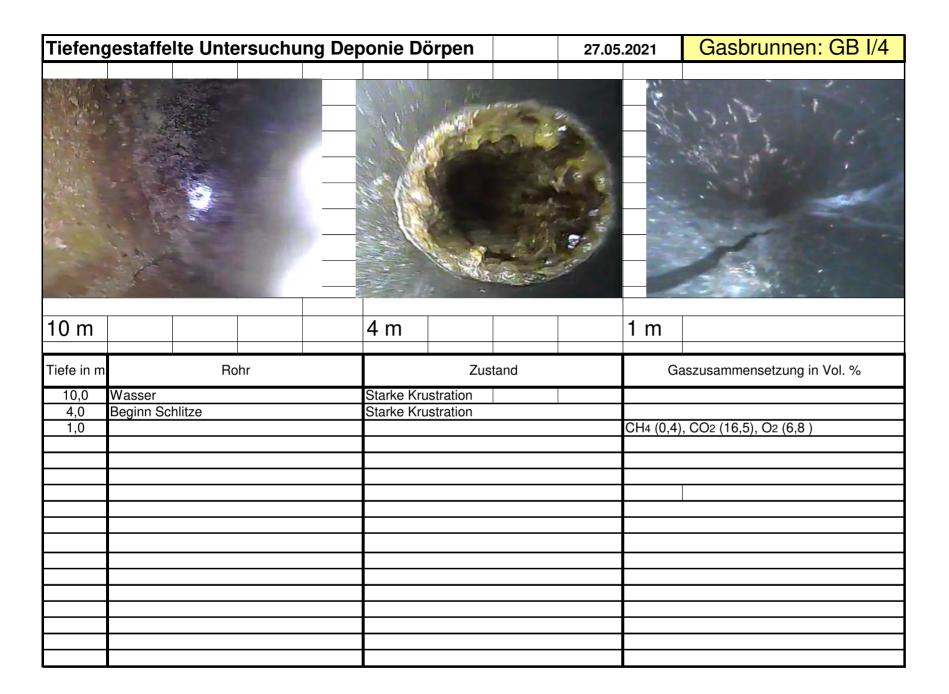
## Deponie Dörpen - Fremdkontrolle der Entgasung Wirkungskontrolle 2020/2021

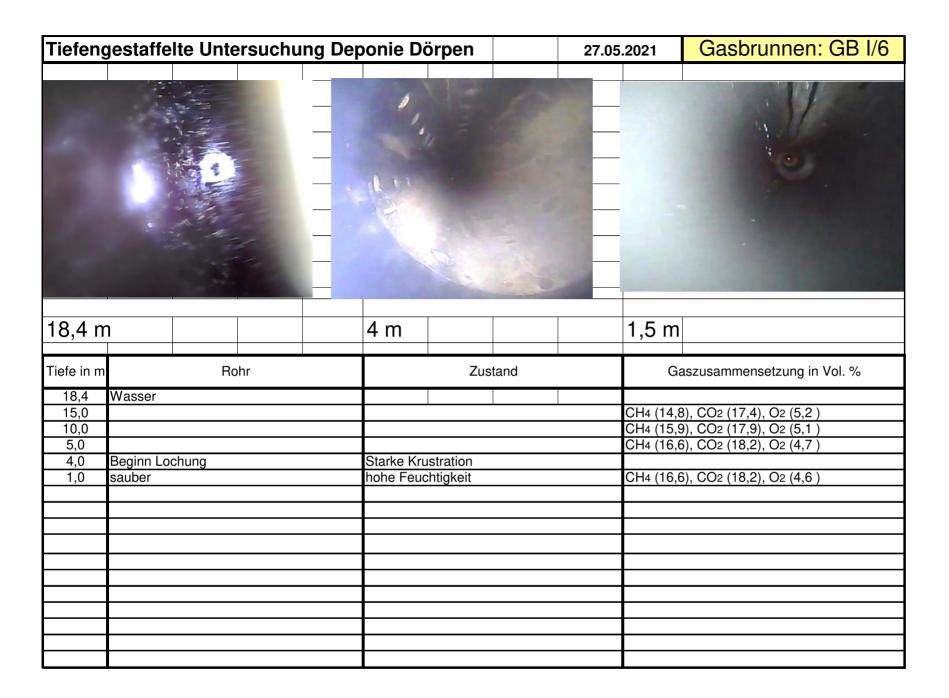
Dezentrale Gassammelstelle GS III/2

Messprotokoll Blatt-Nr. 8


|                     | Della                                 | 1                    | 12 10 0000  | 04110000    | 04.00.0003 | Vointing                                |
|---------------------|---------------------------------------|----------------------|-------------|-------------|------------|-----------------------------------------|
|                     | Datum<br>Mothan CH                    | ()/01 ()/            | 13.10.2020  | 24.11.2020  | 24.02.2021 | Kopfmessung                             |
|                     | Methan CH <sub>4</sub>                | (Vol%)               |             | 28,5        |            | üharhaut                                |
| III/O 1             |                                       | (Vol%)<br>(Vol%)     | 25,4<br>0,0 | 15,1<br>1,0 |            | überbaut                                |
| III/2.1             | Sauerstoff O <sub>2</sub> Durchfluß Q | , ,                  |             |             | 0.0        | -                                       |
|                     |                                       | (Nm³/h)<br>(°)       | 0,0<br>45   | 1,5<br>45   | 0,0<br>0   | -                                       |
|                     | Klappe<br>Methan CH₄                  | (Vol%)               | 41,1        | 35,9        | <u> </u>   | 61,6                                    |
|                     |                                       | (VOI%)               | 25,7        | 18,7        |            | 34,9                                    |
| III/2.2             | Sauerstoff $O_2$                      | (VOI%)               |             | 9,9         |            | 0,0                                     |
| 111/2.2             | Durchfluß Q                           | $(Nm^3/h)$           |             | 3,0         | 0,0        | 0,0                                     |
|                     | Klappe                                | (°)                  | 45          | 45          | 0,0        | 90                                      |
|                     | Methan CH <sub>4</sub>                | (Vol%)               | 34,5        | 40          |            | 66,0                                    |
|                     |                                       | (Vol%)               | 24,0        |             |            | 33,5                                    |
| III/2.3             | Sauerstoff O <sub>2</sub>             | (Vol%)               | 0,0         |             |            | 0,0                                     |
| 111, 2.0            | Durchfluß Q                           | (Nm <sup>3</sup> /h) | 0           | n.m.        | 0          | 5,5                                     |
|                     | Klappe                                | (°)                  | 45          |             | 0          | 0>90                                    |
|                     | Methan CH₄                            | (Vol%)               | 41,2        | 0,2         |            | 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 |
|                     | Kohlendioxid CO <sub>2</sub>          | ,                    |             | 0,6         |            | überbaut                                |
| III/2.4             | Sauerstoff O <sub>2</sub>             | (Vol%)               | 0,5         | 19,2        |            |                                         |
| , 2.7               | Durchfluß Q                           | (Nm <sup>3</sup> /h) | 0           | 0,0         | 0,0        | 1                                       |
|                     | Klappe                                | (°)                  | 90          | 0           | 0          | 1                                       |
|                     | Methan CH <sub>4</sub>                | (Vol%)               |             | 38,5        |            | <del> </del>                            |
|                     | Kohlendioxid CO <sub>2</sub>          | (Vol%)               | 25,5        | 18,4        |            | überbaut                                |
| III/2.5             | Sauerstoff O <sub>2</sub>             | (Vol%)               | 0,0         | 7,1         |            | 1                                       |
| ,                   | Durchfluß Q                           | (Nm <sup>3</sup> /h) | 0,0         | n.m.        | n.m.       | 1                                       |
|                     | Klappe                                | (°)                  | 90          | 30          | 0          | 1                                       |
|                     | Methan CH <sub>4</sub>                | (Vol%)               |             | 28,4        |            |                                         |
|                     |                                       | (Vol%)               | 24,4        | 15,6        |            | überbaut                                |
| III/2.6             | Sauerstoff O <sub>2</sub>             | (Vol%)               |             | 10,3        |            |                                         |
| ,                   | Durchfluß Q                           | $(Nm^3/h)$           |             | n.m.        | n.m.       |                                         |
|                     | Klappe                                | (°)                  | 90          | 30          |            |                                         |
|                     | Methan CH₄                            | (Vol%)               | 41,8        | 35,1        |            |                                         |
|                     | Kohlendioxid CO <sub>2</sub>          | (Vol%)               | 25,3        | 18,9        |            | überbaut                                |
| III/2.7             | Sauerstoff O <sub>2</sub>             | (Vol%)               | 0,0         | 7,2         |            |                                         |
|                     | Durchfluß Q                           | (Nm <sup>3</sup> /h) | 0,0         | n.m.        | n.m.       |                                         |
|                     | Klappe                                | (°)                  | 90          | 30          |            |                                         |
|                     | Methan CH₄                            | (Vol%)               |             |             |            |                                         |
|                     | Kohlendioxid CO <sub>2</sub>          | -                    | 8,3         |             |            | überbaut                                |
| III/2.8D            | Sauerstoff O <sub>2</sub>             | (Vol%)               | 14,1        |             |            |                                         |
|                     | Durchfluß Q                           | (Nm <sup>3</sup> /h) | 0           | 0,0         |            |                                         |
|                     | Klappe                                | (°)                  | 0           | 0           |            | <u> </u>                                |
|                     | Methan CH <sub>4</sub>                | (Vol%)               | 20,4        |             |            |                                         |
|                     |                                       | (Vol%)               | 13,8        |             |            | überbaut                                |
| III/2.9D            | Sauerstoff O <sub>2</sub>             | (Vol%)               | 9,6         |             |            | <b> </b>                                |
|                     | Durchfluß Q                           | (Nm <sup>3</sup> /h) | 0,0         | 0,0         |            | <b> </b>                                |
|                     | Klappe                                | (°)                  | 0           | 0           |            | <u> </u>                                |
|                     | Methan CH <sub>4</sub>                | (Vol%)               |             |             |            | -                                       |
|                     |                                       | (Vol%)               |             |             |            | -                                       |
|                     | Sauerstoff O <sub>2</sub>             | (Vol%)               |             |             |            | -                                       |
|                     | Durchfluß Q                           | (Nm <sup>3</sup> /h) |             |             |            | -                                       |
|                     | Klappe                                | (°)                  | 47.4        |             | F 0        | <u> </u>                                |
|                     | Methan CH <sub>4</sub>                | (Vol%)               |             | -           | 5,9        | -                                       |
|                     | Kohlendioxid CO <sub>2</sub>          | · ·                  | 25,1        | -           | 3,6        |                                         |
| Abgang              | Sauerstoff O <sub>2</sub>             | (Vol%)               | 0,0         |             | 17,0       |                                         |
|                     | Druck                                 | (mbar)               | -2,0        | -           |            |                                         |
|                     | Durchfluß Q                           | $(Nm^3/h)$           |             | _           | 0,0        | 1                                       |
|                     | Klappe                                | (°)                  | 90          |             | 40 > 0     | 1                                       |
| Durohmossor DN 50 / |                                       | U                    | 70          |             | 40 / 0     | ]                                       |


Durchmesser DN 50 / 150 mm



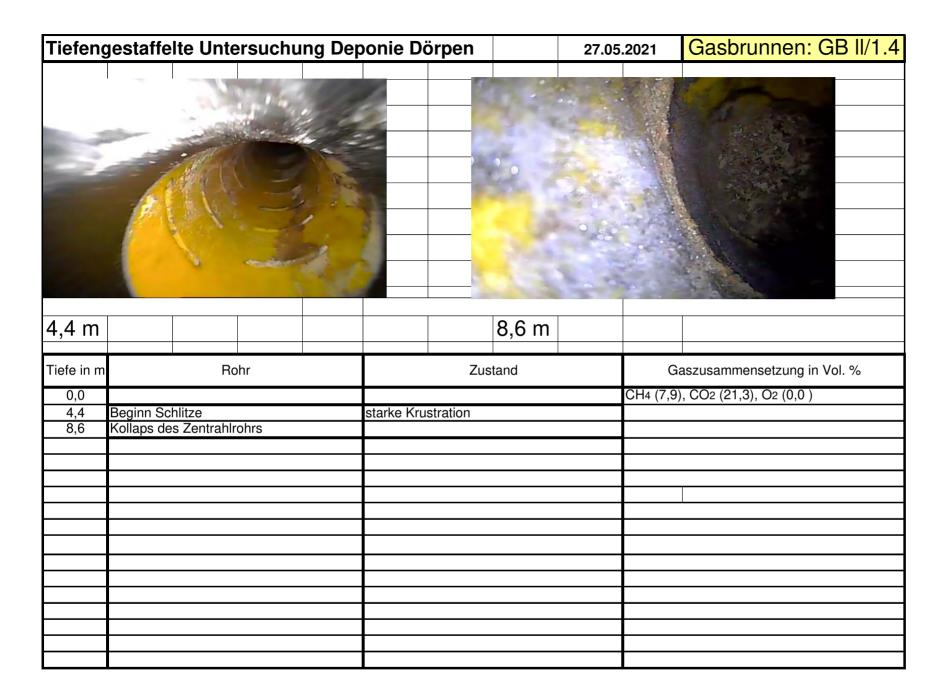


## Anlage 6: Tiefengestaffelte Untersuchung Deponie Dörpen

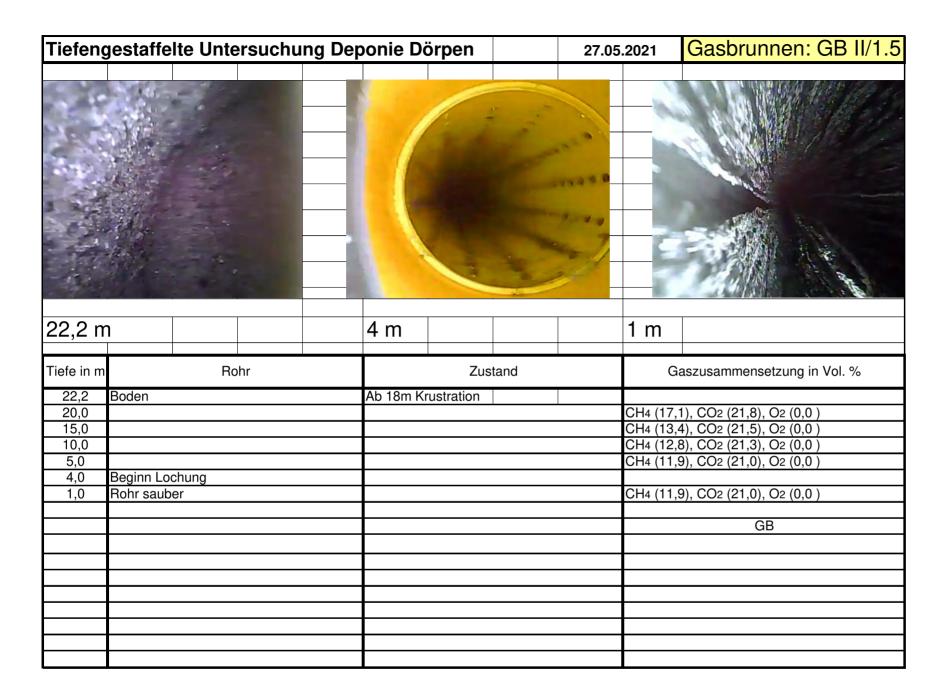
| Tiefenç           | Tiefengestaffelte Untersuchung Deponie Dörpen |            |  |                   |      |  | .2021     | Gasbrunnen: GB I/1          |
|-------------------|-----------------------------------------------|------------|--|-------------------|------|--|-----------|-----------------------------|
|                   |                                               |            |  |                   |      |  |           |                             |
| 9,1 m             |                                               |            |  | 3,7 m             |      |  | 1 m       |                             |
| Tiefe in m        |                                               | Rohr       |  | Zus               | tand |  | G         | aszusammensetzung in Vol. % |
| 9,1<br>3,7<br>1,0 | Boden<br>Beginn Loc<br>Rohr saube             | hung<br>er |  | hohe Feuchtigkeit |      |  | CH4 (19,3 | 3), CO2 (25,0), O2 (0,0 )   |
|                   |                                               |            |  |                   |      |  |           |                             |
|                   |                                               |            |  |                   |      |  |           |                             |
|                   |                                               |            |  |                   |      |  |           |                             |



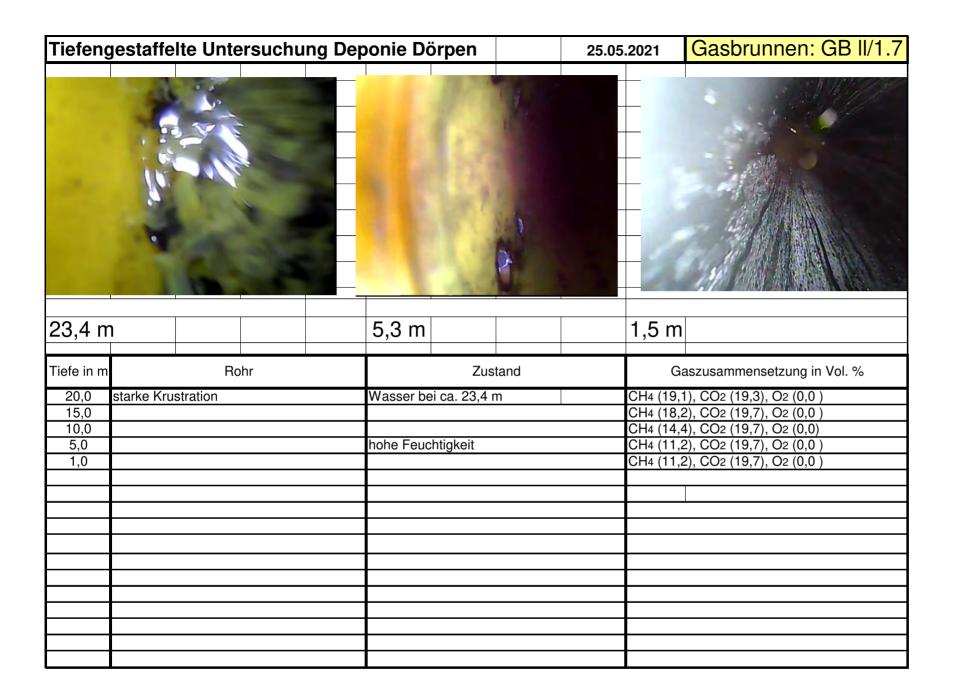






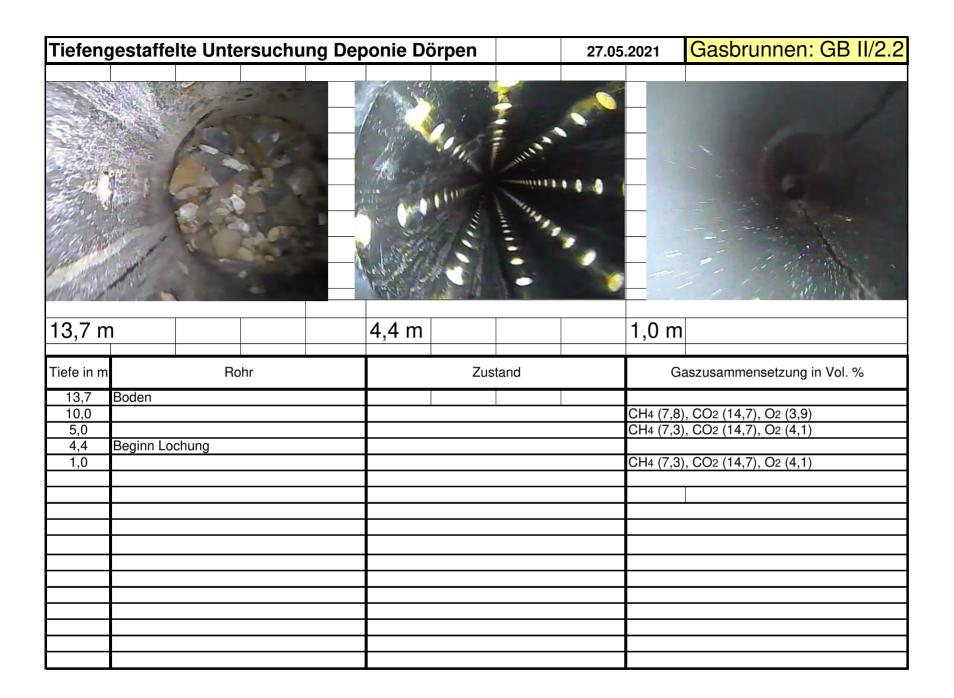


| Tiefengestaffelte                               | Untersuchunç | Deponie Dörpen                            | 27.05.2021         | Gasbrunnen: GB I/7                                                                                                                                                                                               |
|-------------------------------------------------|--------------|-------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                 |              |                                           |                    |                                                                                                                                                                                                                  |
| 20,7m                                           |              | 5,2m                                      | 1m                 |                                                                                                                                                                                                                  |
| Tiefe in m                                      | Rohr         | Zustand                                   | (                  | Gaszusammensetzung in Vol. %                                                                                                                                                                                     |
| 20,7 Wasser  15,0  10,0  5,2 Beginn Schlit  1,0 | ze           | hohe Feuchtigkeit Schwebteilchen Sichtbar | CH4 (13<br>CH4 (14 | ,6), CO <sub>2</sub> (23,1), O <sub>2</sub> (0,0)<br>,8), CO <sub>2</sub> (23,1), O <sub>2</sub> (0,0)<br>,3), CO <sub>2</sub> (23,6), O <sub>2</sub> (0,0)<br>,1), CO <sub>2</sub> (23,6), O <sub>2</sub> (0,0) |

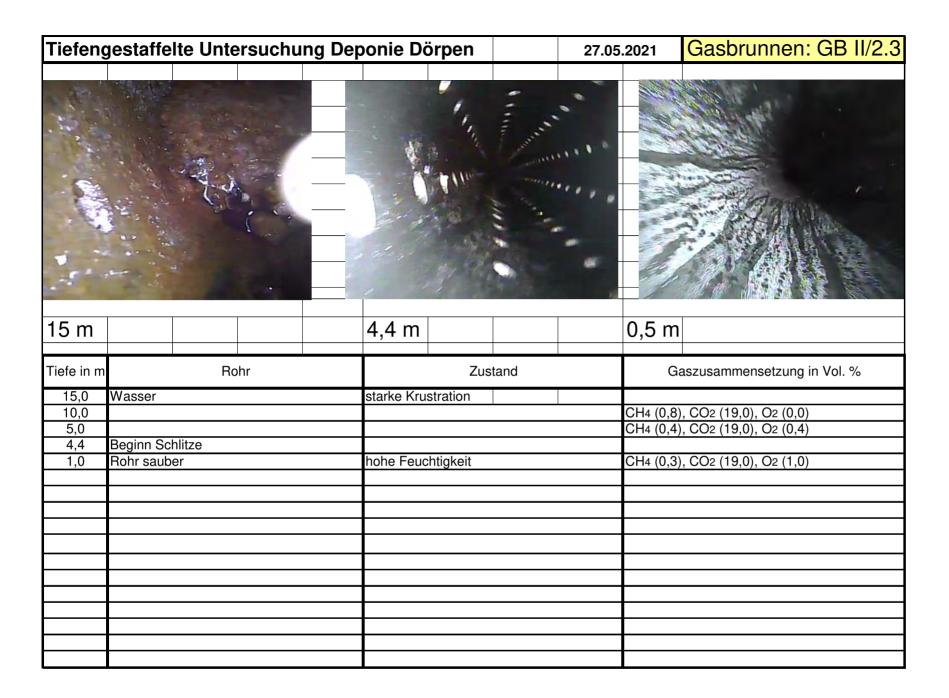
| Tiefenç           | gestaffelte U | ntersuchung Dep | onie Dö                   | rpen                 |          | 24.02.2021 | Gasbrunnen: GB II/1.1        |
|-------------------|---------------|-----------------|---------------------------|----------------------|----------|------------|------------------------------|
|                   |               |                 |                           |                      |          |            |                              |
| 2,5 m             |               |                 |                           |                      |          |            |                              |
| Tiefe in m        |               | Rohr            |                           | Zust                 | and      |            | Gaszusammensetzung in Vol. % |
| 0,0<br>2,5<br>6,0 | Knick im Rohr |                 | Drainagelei<br>Lochung im | tung<br>ı Rohr gut s | sichtbar |            |                              |
|                   |               |                 |                           |                      |          |            |                              |
|                   |               |                 |                           |                      |          |            |                              |
|                   |               |                 |                           |                      |          |            |                              |

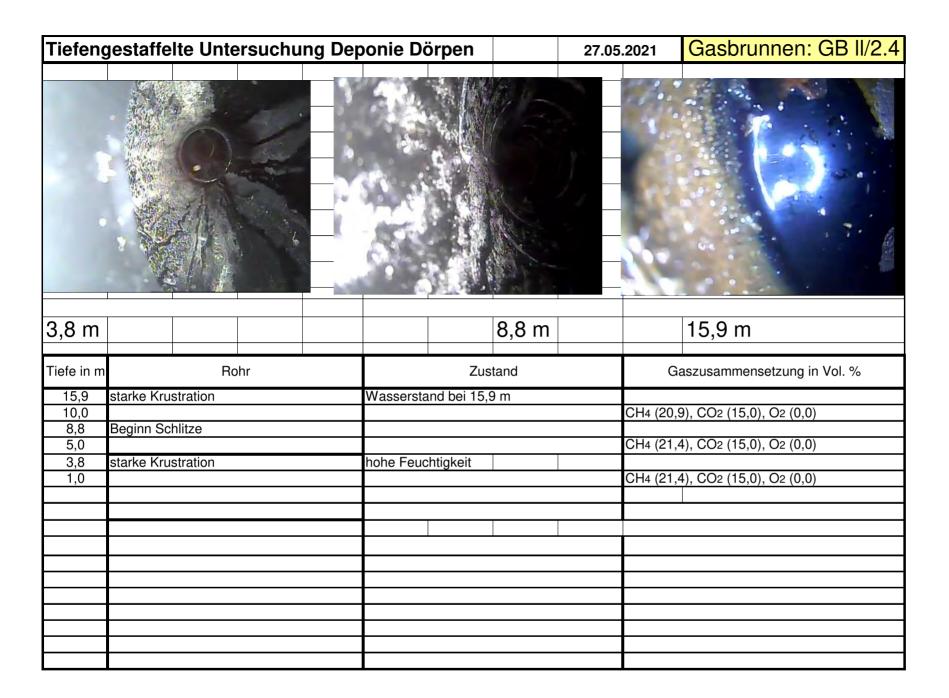

| Tiefeng     | estaffelte Unter | suchung De | 27.05.202 | Gasbrunnen: GB II/1.2 |    |                                                                                                                    |
|-------------|------------------|------------|-----------|-----------------------|----|--------------------------------------------------------------------------------------------------------------------|
|             |                  |            |           |                       |    |                                                                                                                    |
| 11,4m       |                  |            | 4,4m      |                       | 1m | m                                                                                                                  |
| Tiefe in m  | Roh              | r          |           | Zustand               |    | Gaszusammensetzung in Vol. %                                                                                       |
| 10,0<br>5,0 | Beginn Schlitze  |            |           |                       |    | H4 (13,8), CO <sub>2</sub> (19,9), O <sub>2</sub> (0,0)<br>H4 (14,9), CO <sub>2</sub> (21,7), O <sub>2</sub> (0,0) |

| Tiefeng            | Tiefengestaffelte Untersuchung Deponie Dörpen |             |    |       |     |      | 27.05 | .2021 | Gasbrunnen: GB II/1.3                                                                                                                                    |
|--------------------|-----------------------------------------------|-------------|----|-------|-----|------|-------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    |                                               |             |    |       |     |      |       |       |                                                                                                                                                          |
| 13,2 m             |                                               |             |    | 4,0 m |     |      |       | 1,0 m |                                                                                                                                                          |
| Tiefe in m         |                                               | Ro          | hr |       | Zus | tand |       | Ga    | aszusammensetzung in Vol. %                                                                                                                              |
| 10,0<br>5,0<br>4,0 | Beginn Loc<br>Rohr saub                       | chung<br>er |    |       |     |      |       |       | 5), CO <sub>2</sub> (18,6), O <sub>2</sub> (0,0)<br>1), CO <sub>2</sub> (19,0), O <sub>2</sub> (0,0)<br>3), CO <sub>2</sub> (19,0), O <sub>2</sub> (0,0) |

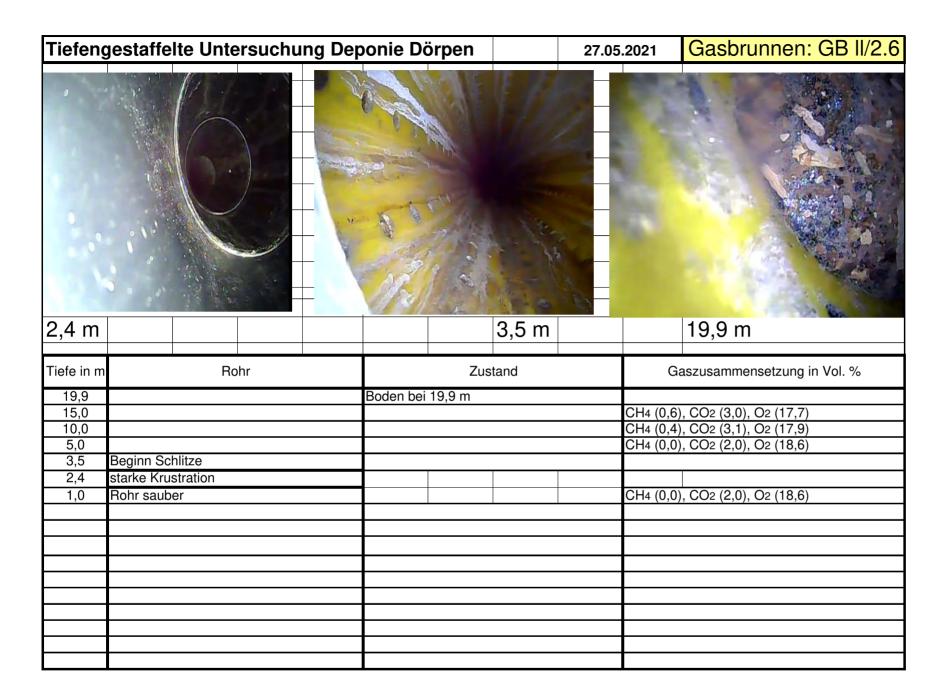




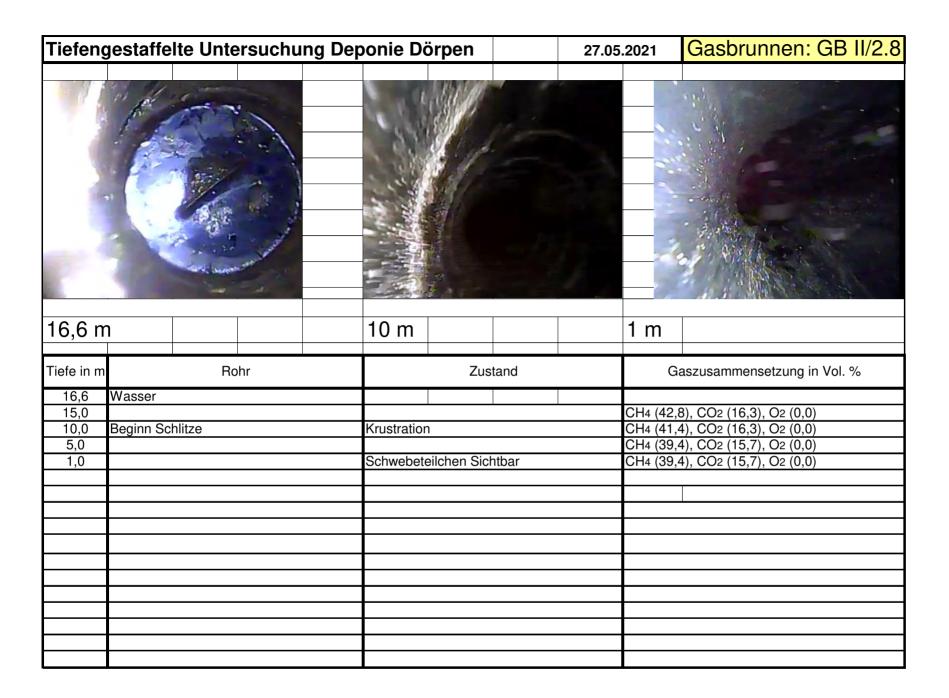


| Tiefengestaffelte                                   | Untersuch | ung Deponie Do | örpen      | 27.05.2021                    | Gasbrunnen: GB II/1.6                                                                                                                                                                                                                                                      |
|-----------------------------------------------------|-----------|----------------|------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                     |           |                | My Sale    |                               |                                                                                                                                                                                                                                                                            |
|                                                     | 0         |                |            |                               |                                                                                                                                                                                                                                                                            |
| 23,9 m                                              |           | 3,8 m          |            | 1m                            |                                                                                                                                                                                                                                                                            |
| Tiefe in m                                          | Rohr      |                | Zustand    | (                             | Gaszusammensetzung in Vol. %                                                                                                                                                                                                                                               |
| 23,9 Wasser 20,0 15,0 10,0 5,0 3,8 Beginn Lochu 1,0 | ng        | Ab 20m Kr      | rustration | CH4 (16<br>CH4 (13<br>CH4 (11 | 7,9), CO <sub>2</sub> (21,8), O <sub>2</sub> (0,0)<br>6,5), CO <sub>2</sub> (21,0), O <sub>2</sub> (0,0)<br>8,2), CO <sub>2</sub> (21,0), O <sub>2</sub> (0,0)<br>1,8), CO <sub>2</sub> (20,4), O <sub>2</sub> (0,0)<br>1,8), CO <sub>2</sub> (20,4), O <sub>2</sub> (0,0) |

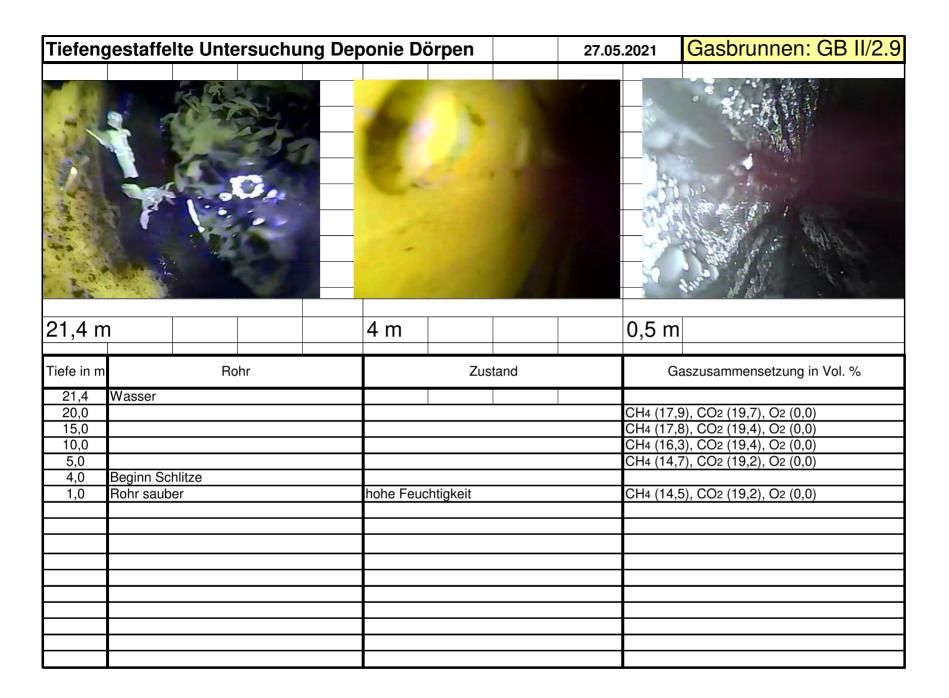


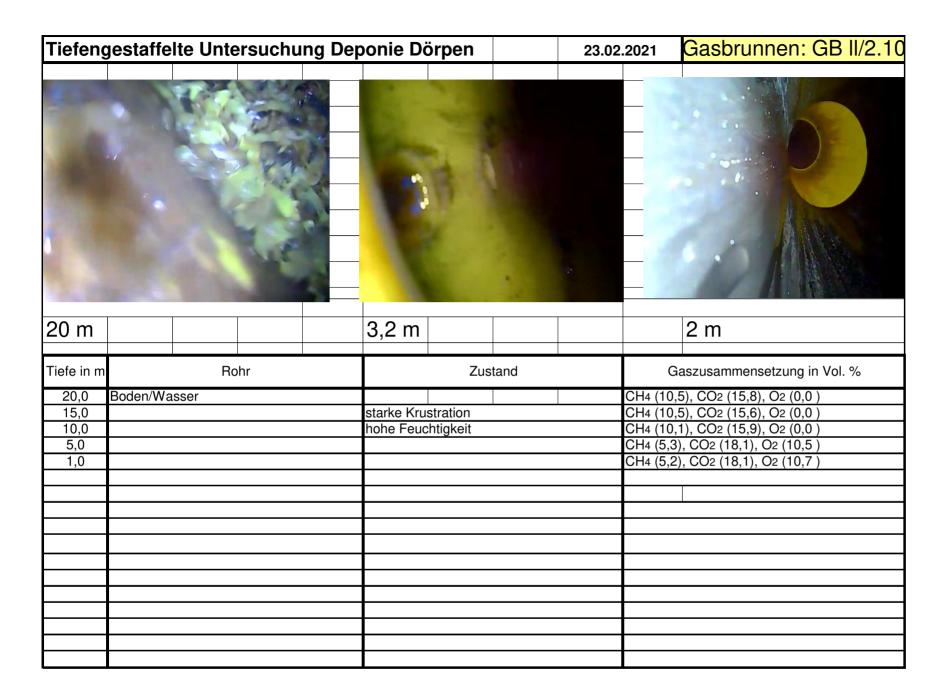

| Tiefenç                             | gestaffe  | Ite Untersuchu | ng Deponie Dörpen         | 27.05.2021       | Gasbrunnen: GB II/1.8                                                                                                                                                                                          |
|-------------------------------------|-----------|----------------|---------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     |           |                |                           |                  |                                                                                                                                                                                                                |
| 21,7 m                              | <u> </u>  |                | 4 m                       | 1 m              |                                                                                                                                                                                                                |
| Tiefe in m                          |           | Rohr           | Zustand                   |                  | Gaszusammensetzung in Vol. %                                                                                                                                                                                   |
| 21,7<br>20,0<br>15,0<br>10,0<br>5,0 | Wasser    | blit-o         | Ab 6 m Starke Krustration | CH4 (9<br>CH4 (7 | 2,3), CO <sub>2</sub> (20,1), O <sub>2</sub> (0,0)<br>7), CO <sub>2</sub> (19,7), O <sub>2</sub> (0,0)<br>8), CO <sub>2</sub> (19,7), O <sub>2</sub> (0,0)<br>8), CO <sub>2</sub> (20,0), O <sub>2</sub> (0,0) |
| 4,0<br>1,0                          | Beginn Sc | niitze         | Schwebeteilchen Sichtbar  | CH4 (7           | 8), CO <sub>2</sub> (20,0), O <sub>2</sub> (0,0)                                                                                                                                                               |
|                                     |           |                |                           |                  |                                                                                                                                                                                                                |


| Tiefen                      | gestaffe    | Ite Untersuchun | g Deponie Dörpen      | 23.02.2021                    | Gasbrunnen: GB II/1.9                                                                                                                                                                                        |
|-----------------------------|-------------|-----------------|-----------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             |             |                 |                       |                               |                                                                                                                                                                                                              |
| 20,5 n                      | n           |                 |                       | 2,5 n                         | n                                                                                                                                                                                                            |
| Tiefe in m                  | 1           | Rohr            | Zustand               |                               | Gaszusammensetzung in Vol. %                                                                                                                                                                                 |
| 20,5<br>15,0<br>10,0<br>5,0 | starke Krus |                 | Wasser bei ca. 20,5 m | CH4 (0,<br>CH4 (7,<br>CH4 (6, | 0), CO <sub>2</sub> (0,2), O <sub>2</sub> (20,8)<br>4), CO <sub>2</sub> (0,3), O <sub>2</sub> (18,9)<br>7), CO <sub>2</sub> (17,6), O <sub>2</sub> (0,0)<br>7), CO <sub>2</sub> (17,7), O <sub>2</sub> (0,0) |
| 1,0                         | Rohr saub   | er              | hohe Feuchtigkeit     | CH4 (6,                       | 6), CO <sub>2</sub> (17,8), O <sub>2</sub> (0,0)                                                                                                                                                             |

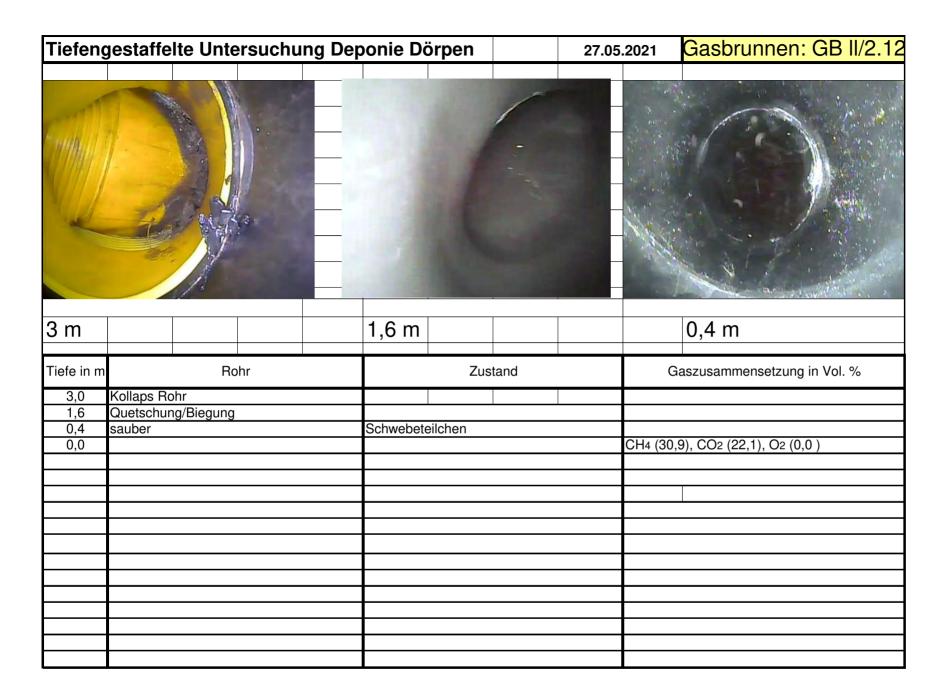


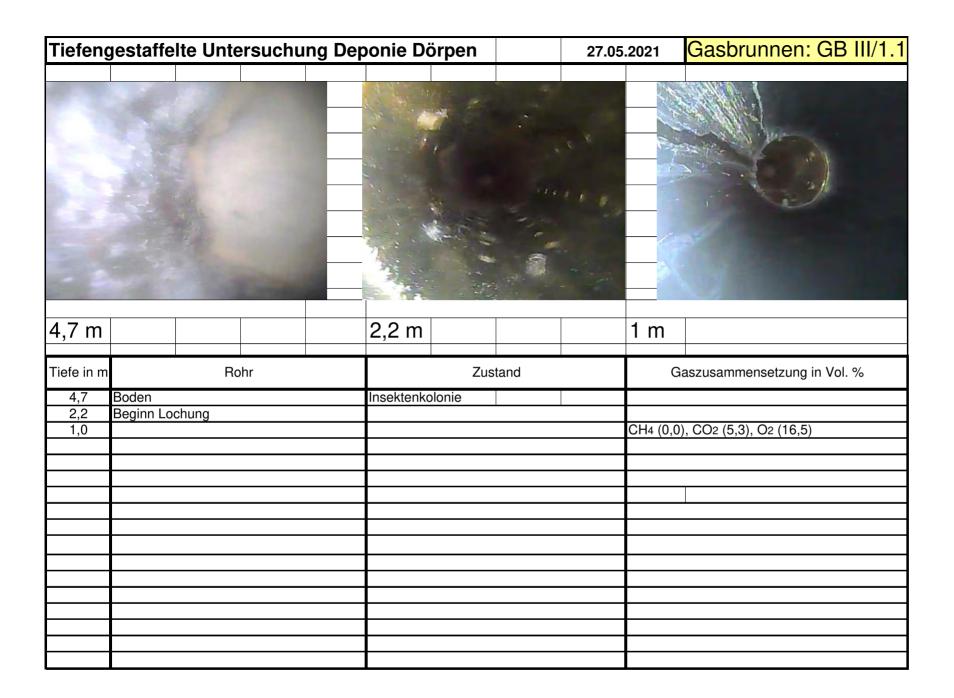




| Tiefenges   | staffelte Untersuchun          | g Deponie Dörpen | 23.02.2021 | Gasbrunnen: GB II/2.5                            |
|-------------|--------------------------------|------------------|------------|--------------------------------------------------|
|             |                                |                  |            |                                                  |
|             |                                |                  |            |                                                  |
|             |                                |                  |            |                                                  |
|             |                                |                  |            |                                                  |
|             |                                |                  |            |                                                  |
|             |                                |                  |            |                                                  |
|             |                                |                  |            |                                                  |
|             |                                |                  |            |                                                  |
|             |                                |                  |            |                                                  |
|             |                                |                  |            |                                                  |
|             |                                |                  |            |                                                  |
| 1essstutzen | 1/2 Zoll , zu klein für Kamara |                  |            |                                                  |
|             |                                |                  |            |                                                  |
|             |                                |                  |            |                                                  |
| iefe in m   | Rohr                           | Zustand          | G          | aszusammensetzung in Vol. %                      |
| 20,0        |                                |                  | CH4 (9.2   | 2), CO <sub>2</sub> (18,2), O <sub>2</sub> (0,0) |
| 15,0        |                                |                  | CH4 (9,1   | ), CO <sub>2</sub> (18,2), O <sub>2</sub> (0,0)  |
| 10,0        |                                |                  | CH4 (8,8   | 3), CO <sub>2</sub> (18,0), O <sub>2</sub> (0,0) |
| 5,0         |                                |                  | CH4 (8,7   | 7), CO2 (17,7), O2 (0,0 )                        |
| 4 ^         |                                |                  | CH4 (8.7   | 7), CO <sub>2</sub> (17,7), O <sub>2</sub> (0,0) |
| 1,0         |                                |                  | G114 (8,7  | );                                               |
| 1,0         |                                |                  | OT 14 (0,7 | ), GCL (,.), GL (0,0 )                           |
| 1,0         |                                |                  | 0117 (6,7  | ), 302 (,.), 62 (6,6)                            |
| 1,0         |                                |                  | 0117 (6,7  | ), GCL (,.), GL (6,6 )                           |
| 1,0         |                                |                  |            | ), GCE (,r), GE (6,6 )                           |
| 1,0         |                                |                  |            |                                                  |
| 1,0         |                                |                  |            |                                                  |
| 1,0         |                                |                  |            |                                                  |
| 1,0         |                                |                  |            |                                                  |



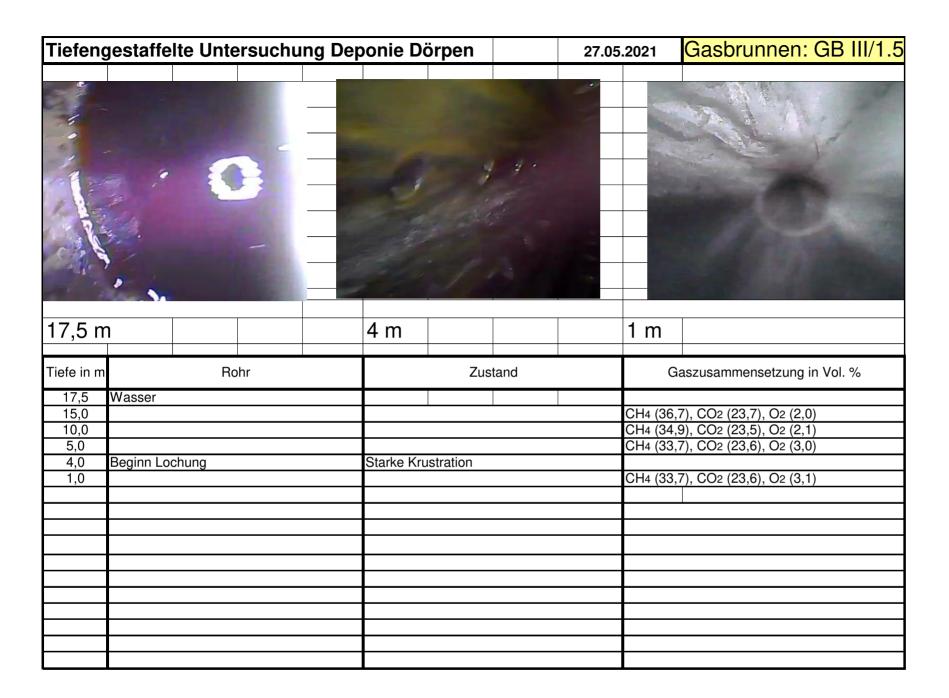

| Tiefenç                    | gestaffe                                                           | Ite Unte | ersuchung Dep | onie D  | örpen                      |                      | 27.05.2 | 2021                         | Gasbrunnen: GB II/2.7                          |  |
|----------------------------|--------------------------------------------------------------------|----------|---------------|---------|----------------------------|----------------------|---------|------------------------------|------------------------------------------------|--|
| 1.5.00                     |                                                                    | A        |               | 10.00   |                            |                      |         |                              |                                                |  |
| 1,5 m                      |                                                                    |          |               | 10 m    |                            |                      |         |                              | 11 m                                           |  |
| Tiefe in m                 |                                                                    | Ro       | hr            | Zustand |                            |                      |         | Gaszusammensetzung in Vol. % |                                                |  |
| 1,0<br>1,5<br>10,0<br>11,0 | leichte Ablagerungen<br>Beginn Schlitze<br>Kollaps am Zentrahlrohr |          |               |         | eilchen sich<br>nt mehrere | ntbar<br>leichte Bög |         | CH4 (0,2)                    | , CO <sub>2</sub> (12,0), O <sub>2</sub> (6,4) |  |
|                            |                                                                    |          |               |         |                            |                      |         |                              |                                                |  |
|                            |                                                                    |          |               |         |                            |                      |         |                              |                                                |  |

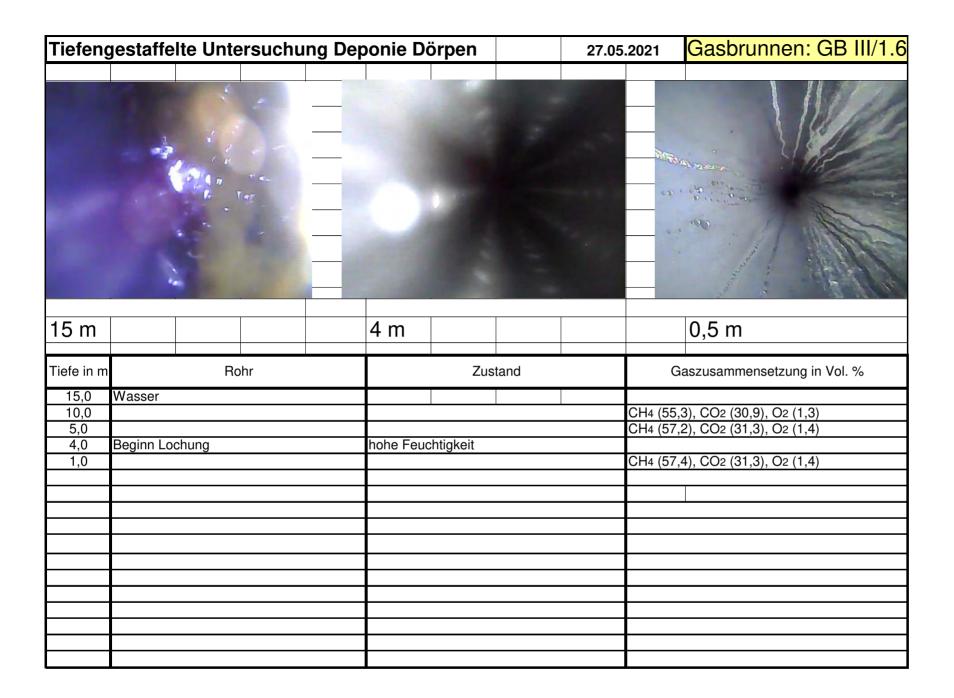


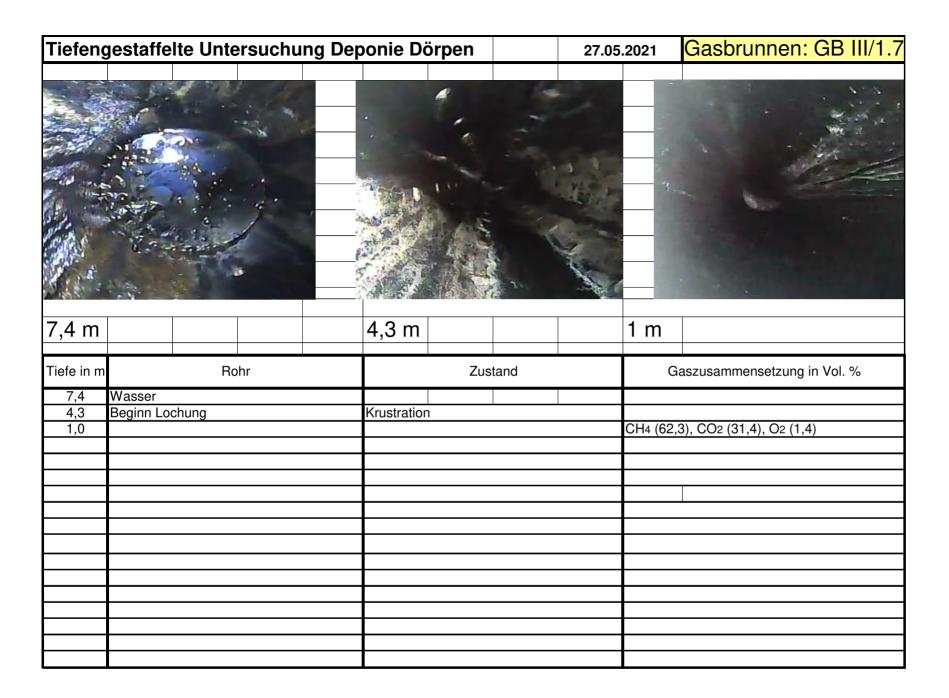





| Tiefenç                            | gestaffe          | Ite Unter | suchung D |           | 27.05.2021 Gasbrunnen: GB II/2.11 |     |    |          |                                                                                                                                                          |
|------------------------------------|-------------------|-----------|-----------|-----------|-----------------------------------|-----|----|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    |                   |           |           |           |                                   |     |    |          |                                                                                                                                                          |
| 17,5 m                             | 1                 |           |           | 4,3 m     |                                   |     | 1  | m        |                                                                                                                                                          |
| Tiefe in m                         |                   | Rohr      |           |           | Zusta                             | and |    | G        | aszusammensetzung in Vol. %                                                                                                                              |
| 17,5<br>15,0<br>10,0<br>5,0<br>4,3 | Wasser  Beginn Sc | hlitze    |           |           |                                   |     | CH | l4 (14,8 | 4), CO <sub>2</sub> (18,9), O <sub>2</sub> (0,0)<br>B), CO <sub>2</sub> (18,7), O <sub>2</sub> (0,0)<br>B), CO <sub>2</sub> (18,7), O <sub>2</sub> (0,0) |
| 1,0                                |                   |           |           | Schwebete | ilchen sichtl                     | oar | СН | l4 (12,8 | B), CO <sub>2</sub> (18,7), O <sub>2</sub> (0,0)                                                                                                         |
|                                    |                   |           |           |           |                                   |     |    |          |                                                                                                                                                          |
|                                    |                   |           |           |           |                                   |     |    |          | _                                                                                                                                                        |
|                                    |                   |           |           |           |                                   |     |    |          |                                                                                                                                                          |



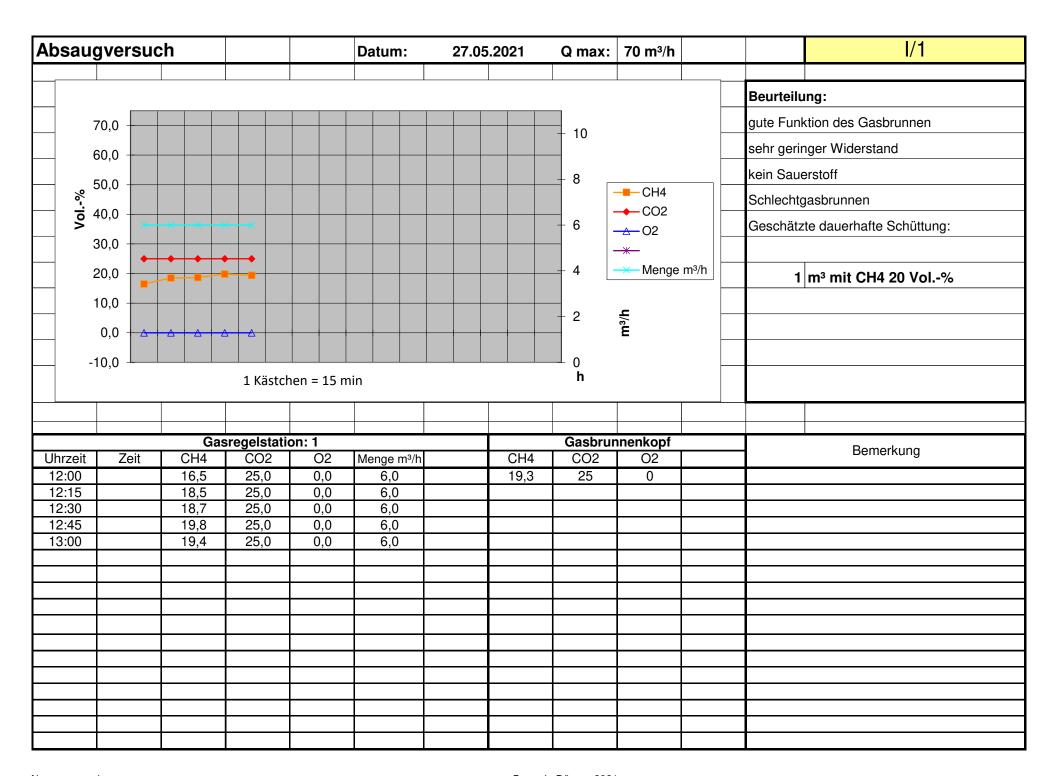


| Tiefen                            | gestaffe         | Ite Untersu | chung Dep | onie Dör     | pen | 27.05 | .2021 | Gasbrunnen: GB III/1.2                                                                                                                                   |
|-----------------------------------|------------------|-------------|-----------|--------------|-----|-------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   |                  |             |           |              |     |       |       |                                                                                                                                                          |
| 12,8 n                            | <u>1</u>         |             |           | 3,5 m        |     |       | 1 m   |                                                                                                                                                          |
| Tiefe in m                        |                  | Rohr        | <u> </u>  | Zustand      |     |       | G     | Gaszusammensetzung in Vol. %                                                                                                                             |
| 12,8<br>10,0<br>5,0<br>3,5<br>1,0 | Boden Beginn Loc | chung       |           | Starke Krust | ·   |       |       | 8), CO <sub>2</sub> (15,1), O <sub>2</sub> (6,5)<br>8), CO <sub>2</sub> (15,0), O <sub>2</sub> (7,5)<br>8), CO <sub>2</sub> (15,0), O <sub>2</sub> (7,6) |
|                                   |                  |             |           |              |     |       |       |                                                                                                                                                          |

| Tiefenç           | gestaffe             | Ite Unte | ersuchung Der | onie D    | örpen    |       | 27.05.2 | 2021     | Gasbrunnen: GB                         | III/1.3 |
|-------------------|----------------------|----------|---------------|-----------|----------|-------|---------|----------|----------------------------------------|---------|
|                   |                      |          |               |           |          |       |         |          |                                        |         |
| 7,4 m             |                      |          |               | 5,1 m     |          |       |         | <br>1 m  | 1 Miles                                |         |
| Tiefe in m        |                      | Ro       | ohr           |           | Zus      | stand |         | G        | aszusammensetzung in Vol. <sup>c</sup> | %       |
| 7,4<br>5,1<br>1,0 | Wasser<br>Beginn Loo | chung    |               | hohe Feuc | htigkeit |       |         | CH4 (47, | 3), CO2 (33,0), O2 (1,7)               |         |
|                   |                      |          |               |           |          |       |         |          |                                        |         |
|                   |                      |          |               |           |          |       |         |          |                                        |         |

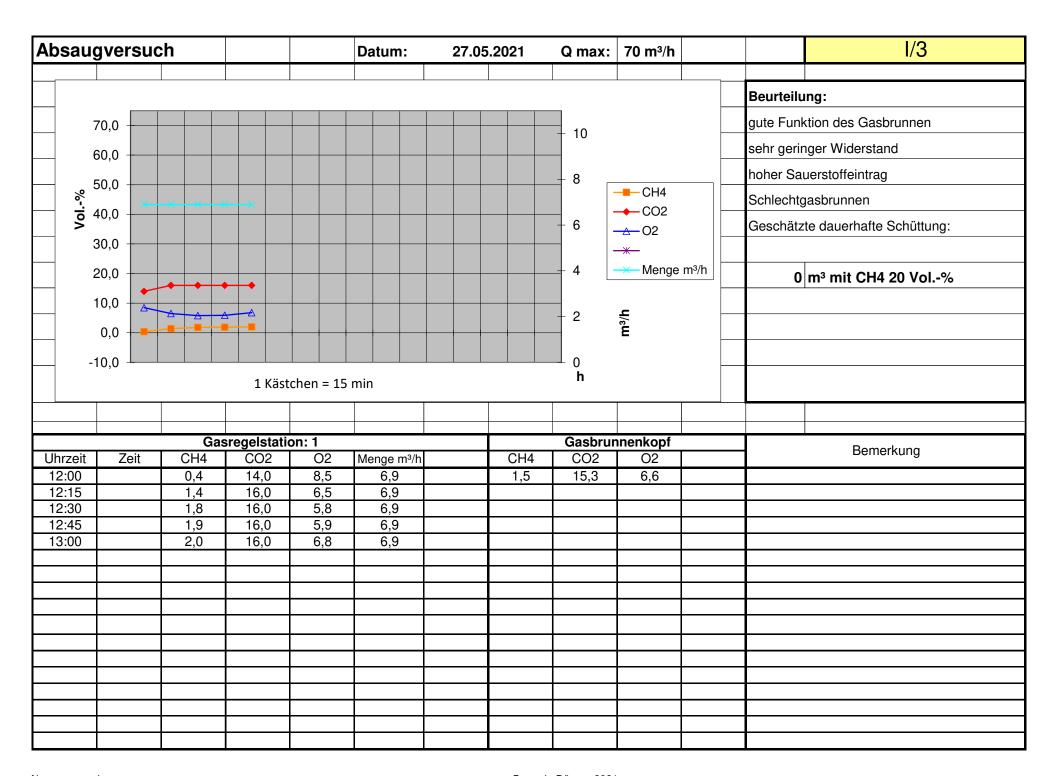
| Tiefenç           | gestaffe          | Ite Unte | ersuchung D | eponie Dö | rpen     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27.05.2 | 2021     | Gasbrunnen: GB III/1.4                           |
|-------------------|-------------------|----------|-------------|-----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|--------------------------------------------------|
|                   |                   |          |             |           | The same | The second secon |         |          |                                                  |
| 8,2 m             |                   |          |             | 3,8 m     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1       | 1 m      |                                                  |
| Tiefe in m        |                   | Ro       | hr          |           | Zust     | tand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | G        | aszusammensetzung in Vol. %                      |
| 8,2<br>3,8<br>1,0 | Wasser Beginn Sci | hlitze   |             |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C       | CH4 (0,8 | ), CO <sub>2</sub> (10,9), O <sub>2</sub> (13,1) |

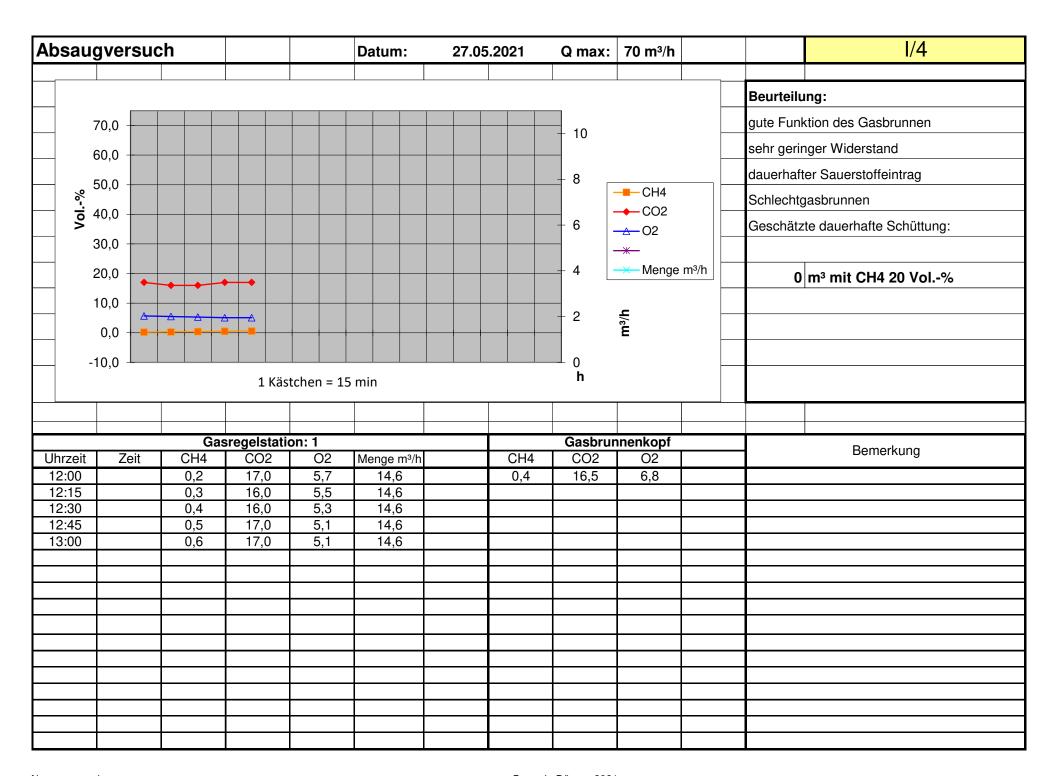


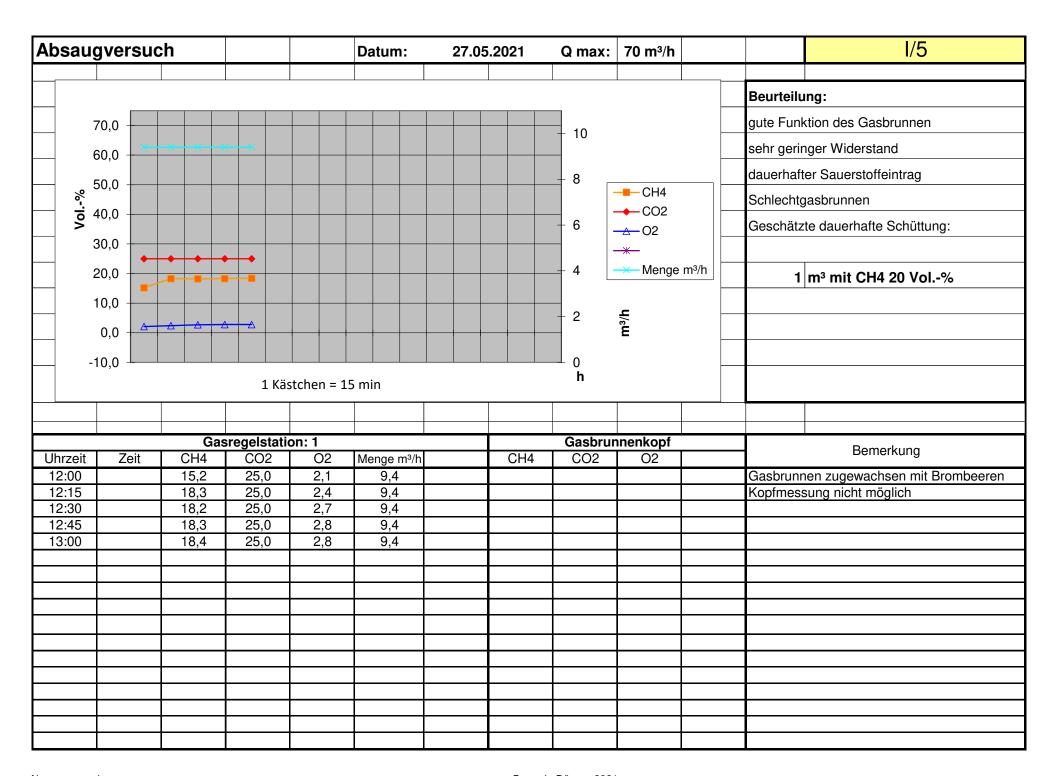


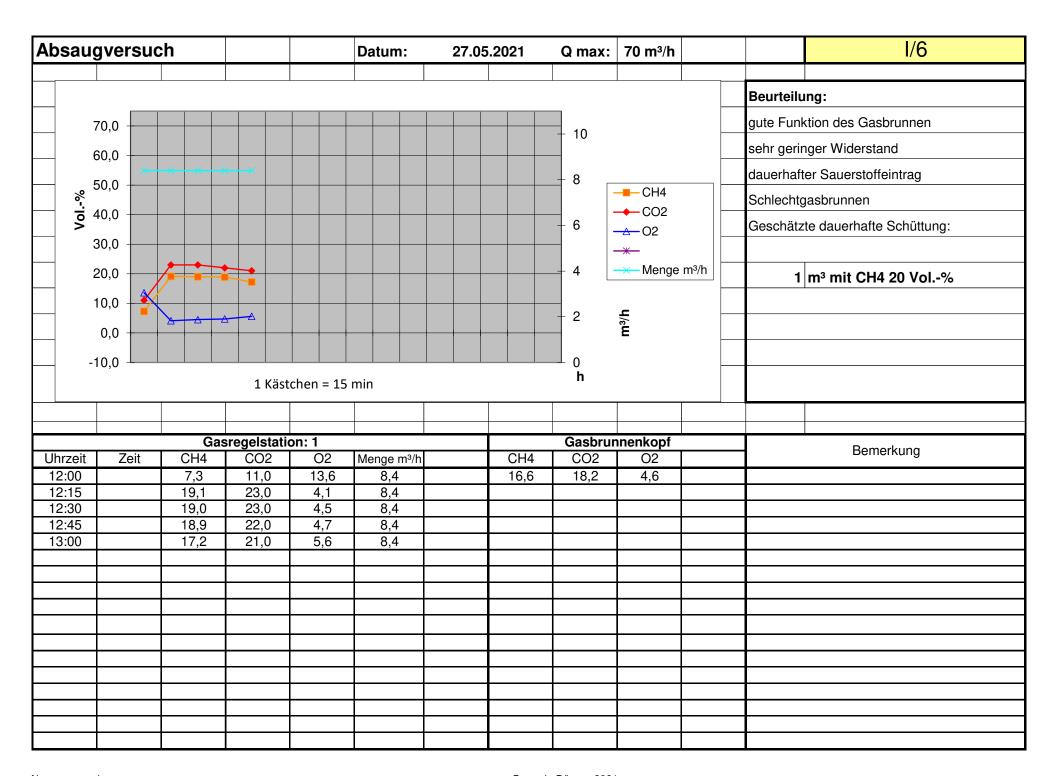


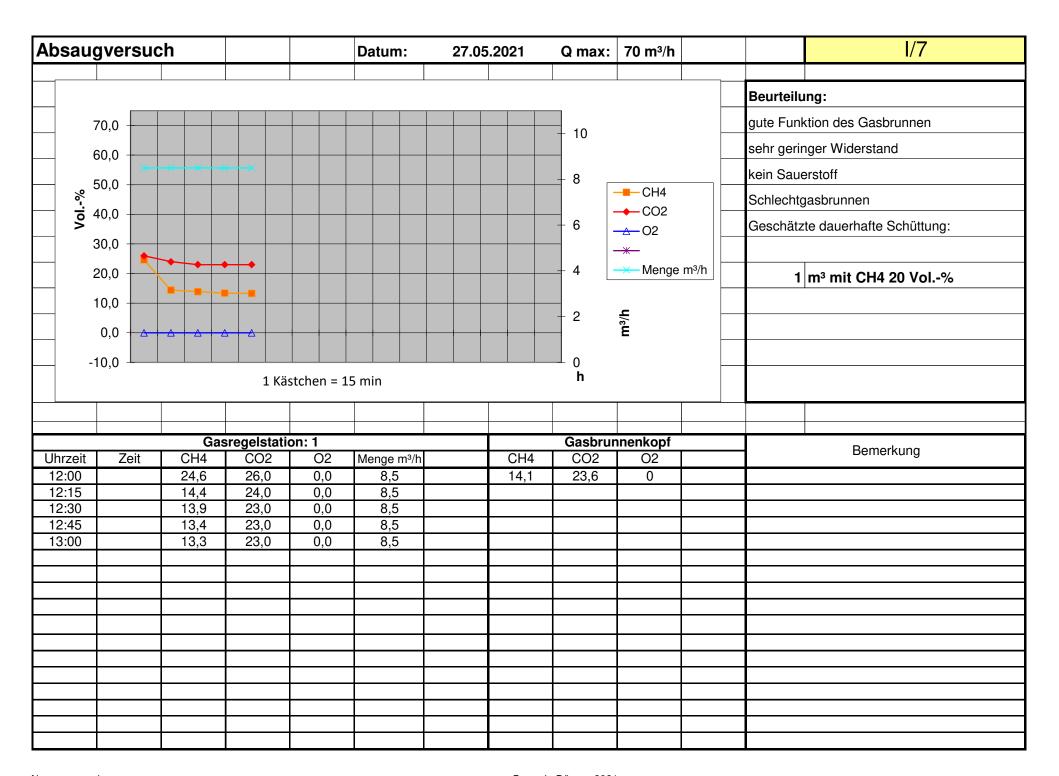

| Tiefenge    | staffelte Unte | ersuchung De | 27.05.2021  | Gasbrunnen: GB III/2.2 |     |                                                                                                                                                                |  |  |
|-------------|----------------|--------------|-------------|------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|             |                |              |             |                        |     |                                                                                                                                                                |  |  |
| 11,7 m      |                |              | 4 m         |                        | 1 m |                                                                                                                                                                |  |  |
| Tiefe in m  | Rohr           |              |             | Zustand                | (   | Gaszusammensetzung in Vol. %                                                                                                                                   |  |  |
| 10,0<br>5,0 | eginn Lochung  |              | Krustration |                        |     | 2,1), CO <sub>2</sub> (32,9), O <sub>2</sub> (0,0)<br>2,1), CO <sub>2</sub> (32,9), O <sub>2</sub> (0,0)<br>2,1), CO <sub>2</sub> (32,9), O <sub>2</sub> (0,0) |  |  |

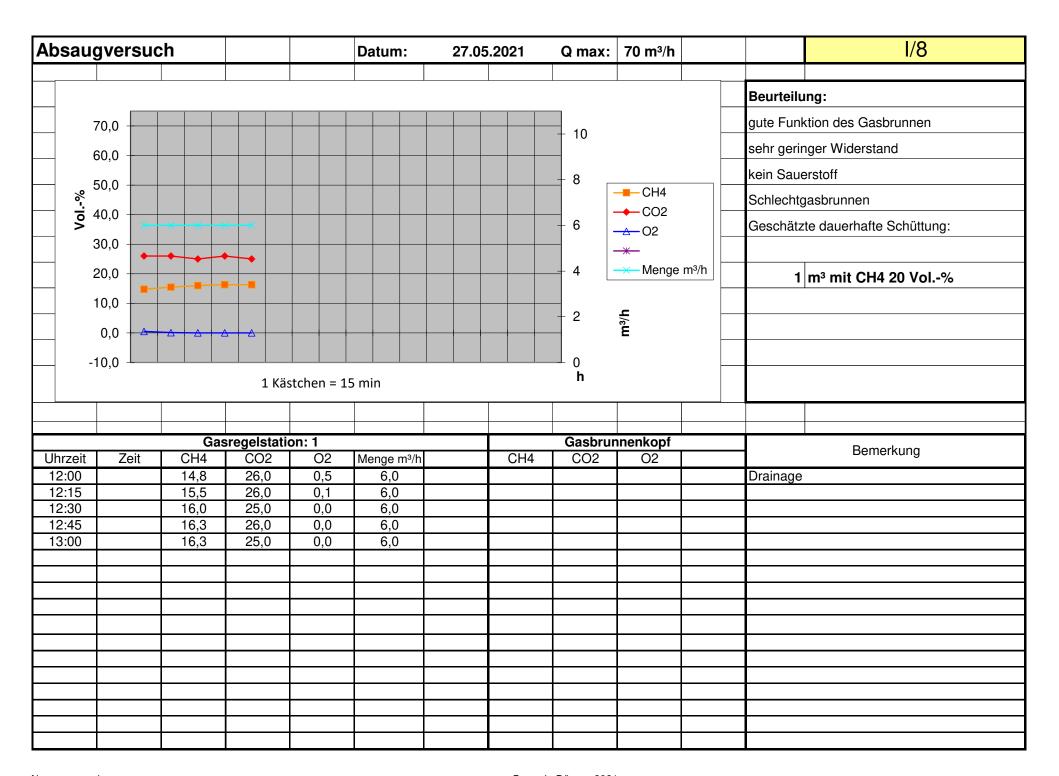

| Tiefengestaffelte Untersuchung Deponie Dörpen |                     |       |  |             |         |  | 27.05.2021 |                              | Gasbrunnen: GB III/                               | GB III/2.3 |
|-----------------------------------------------|---------------------|-------|--|-------------|---------|--|------------|------------------------------|---------------------------------------------------|------------|
|                                               |                     |       |  |             |         |  |            |                              |                                                   |            |
| 7 m                                           |                     |       |  | 3,7 m       |         |  |            | 1 m                          |                                                   |            |
| Tiefe in m                                    | n Rohr              |       |  |             | Zustand |  |            | Gaszusammensetzung in Vol. % |                                                   |            |
| 7,0<br>3,7<br>1,0                             | Wasser<br>Beginn Lo | chung |  | Krustration |         |  |            | CH4 (61,                     | 5), CO <sub>2</sub> (31,69), O <sub>2</sub> (0,0) |            |
|                                               |                     |       |  |             |         |  |            |                              |                                                   |            |
|                                               |                     |       |  |             |         |  |            |                              |                                                   |            |

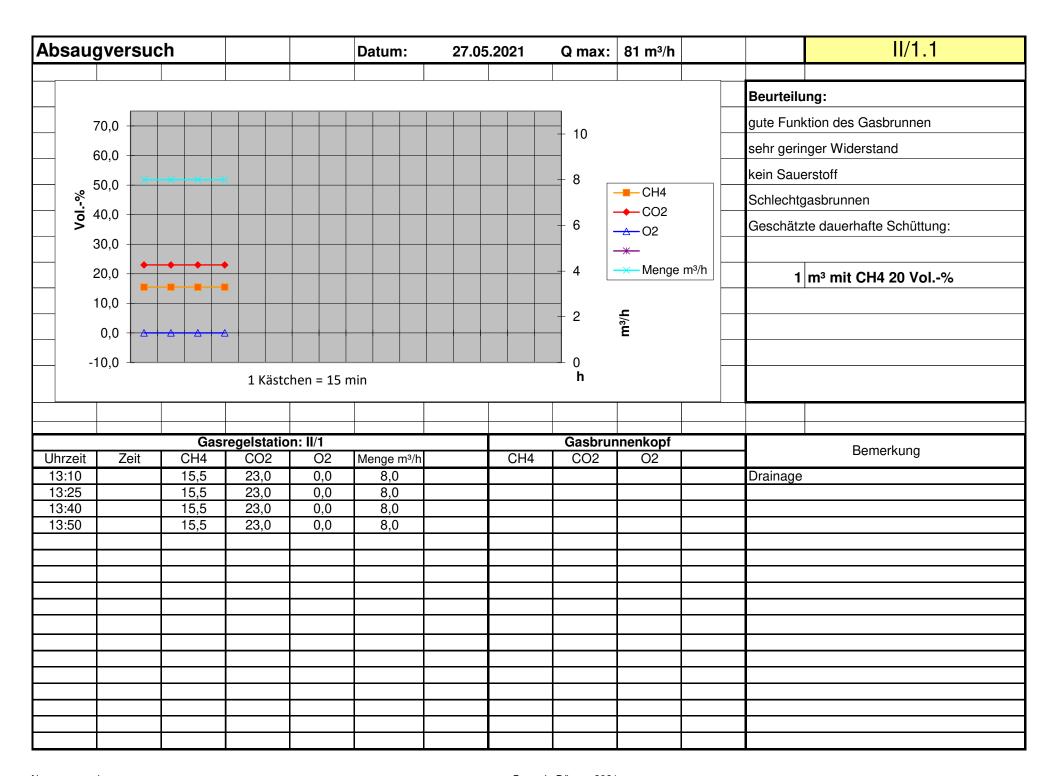


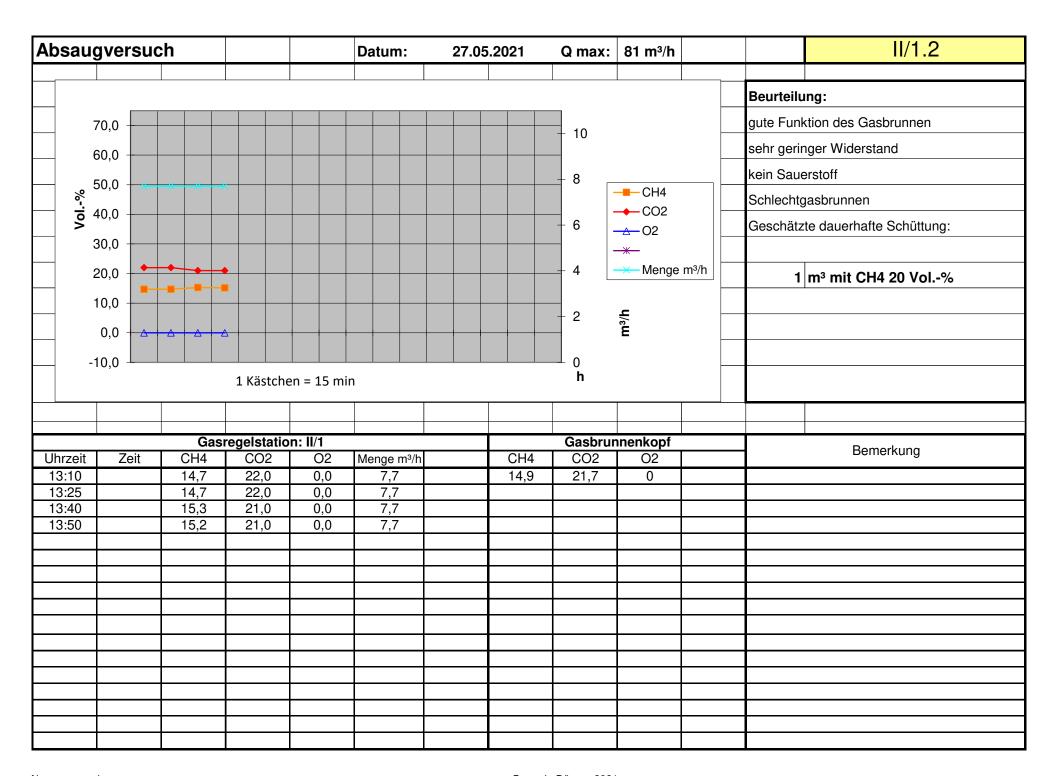


## Anlage 7: Absaugversuch

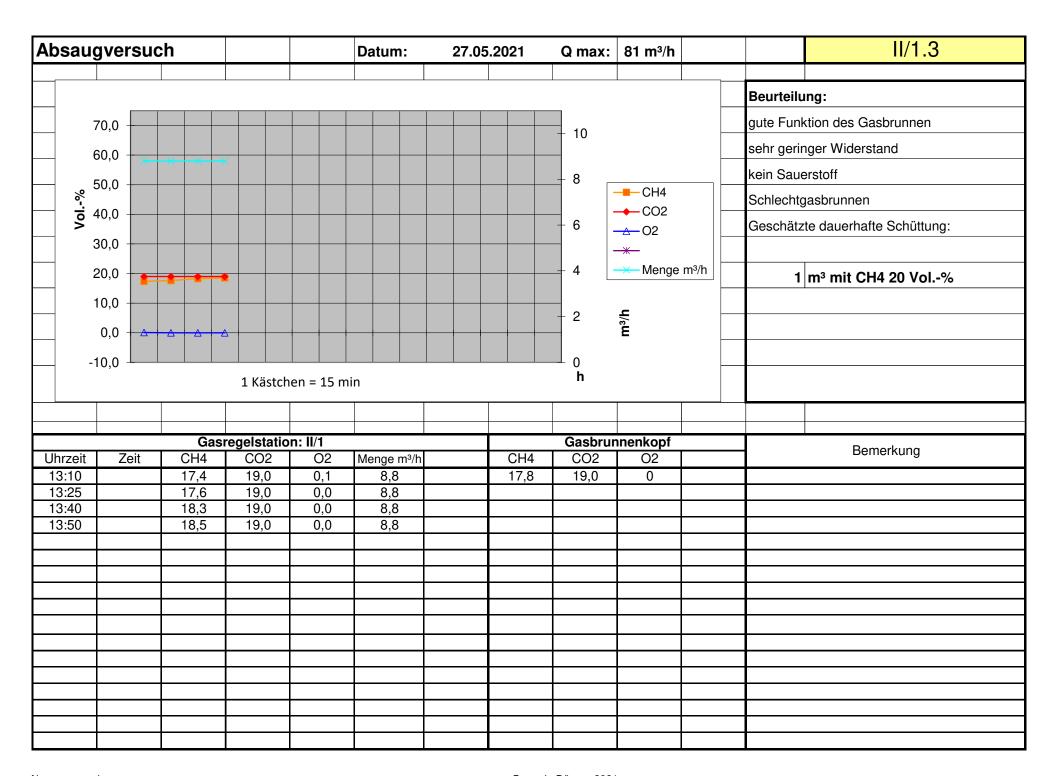


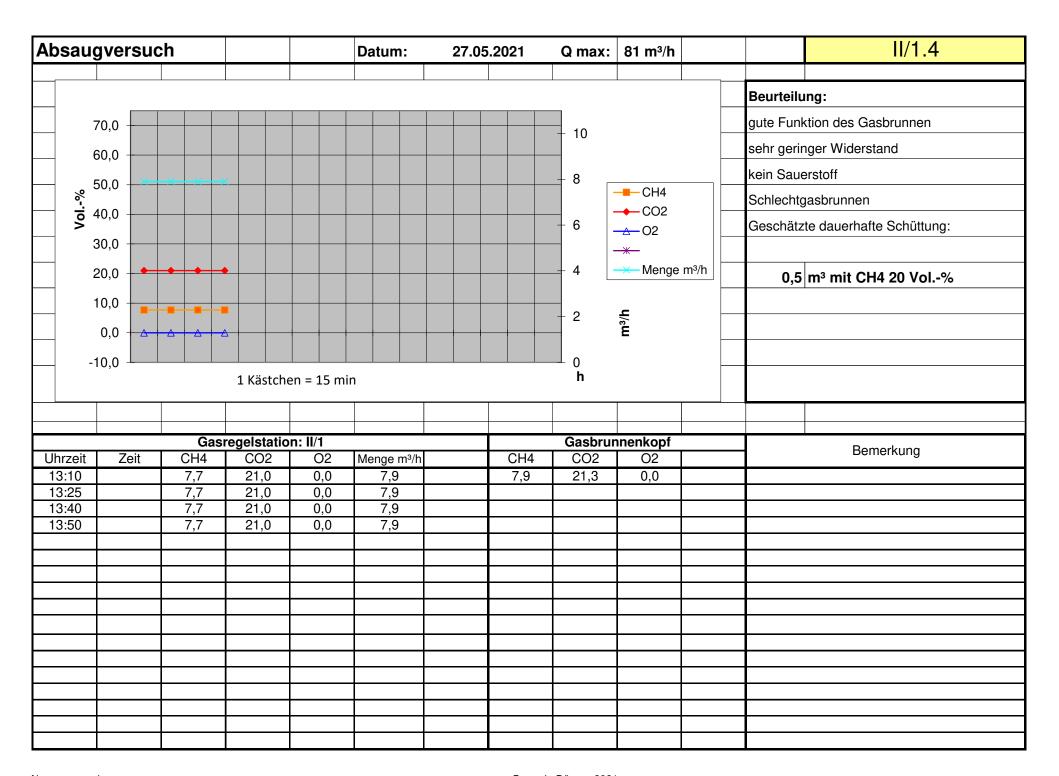



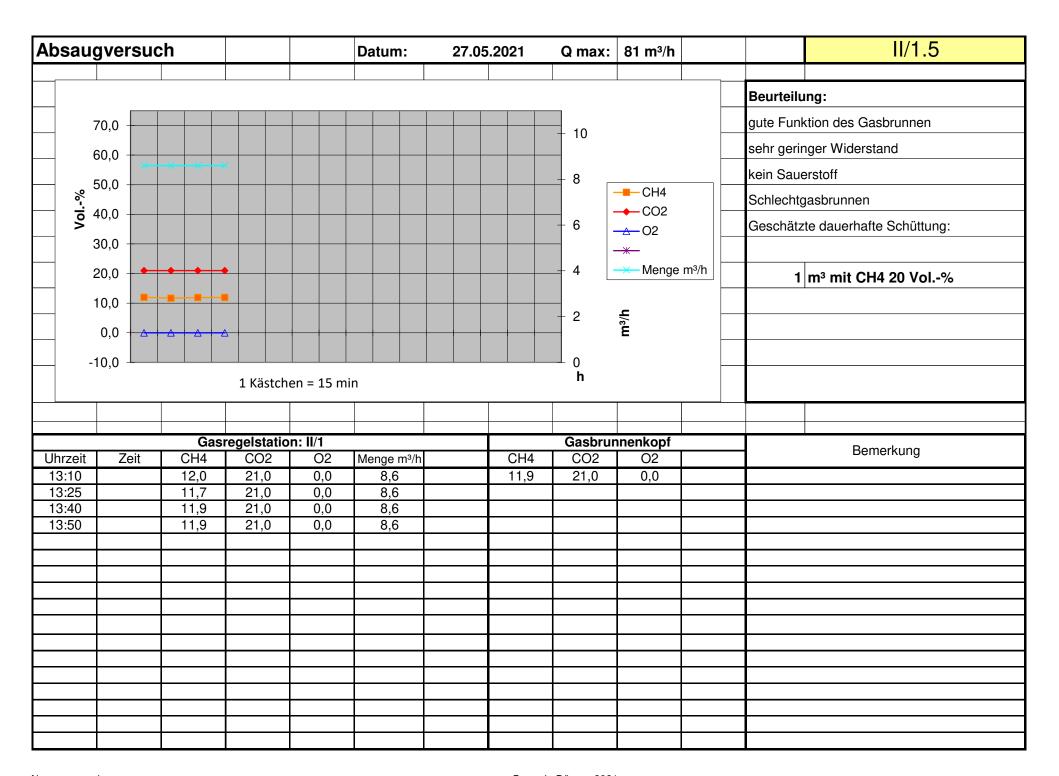



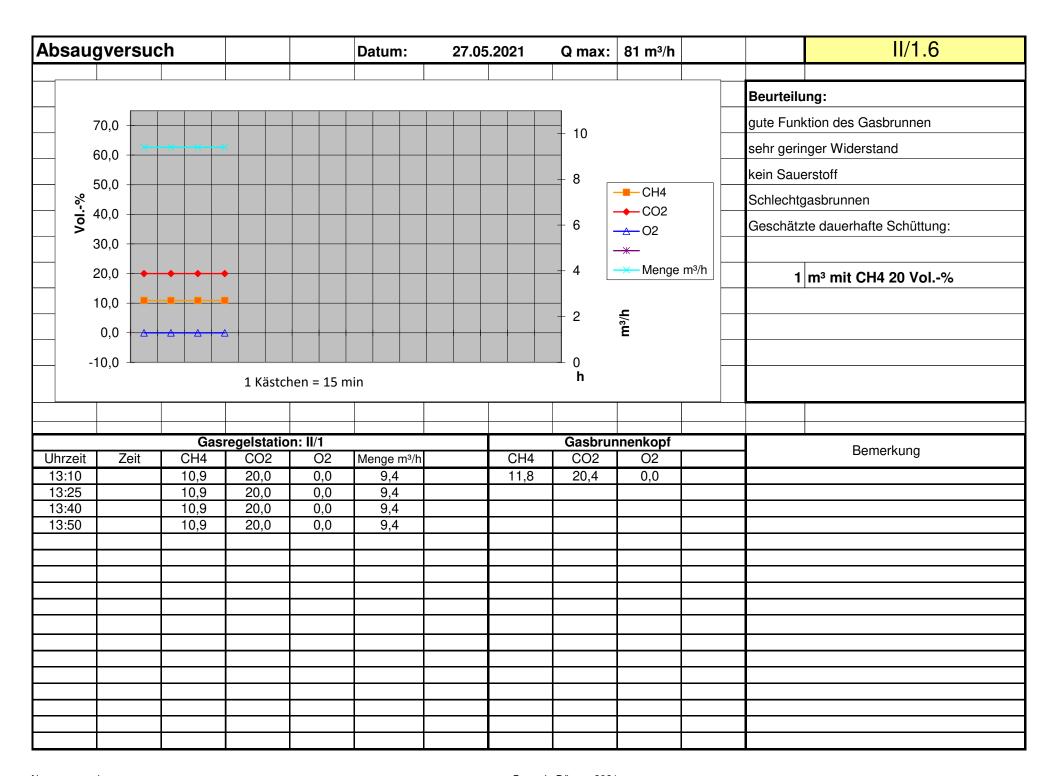



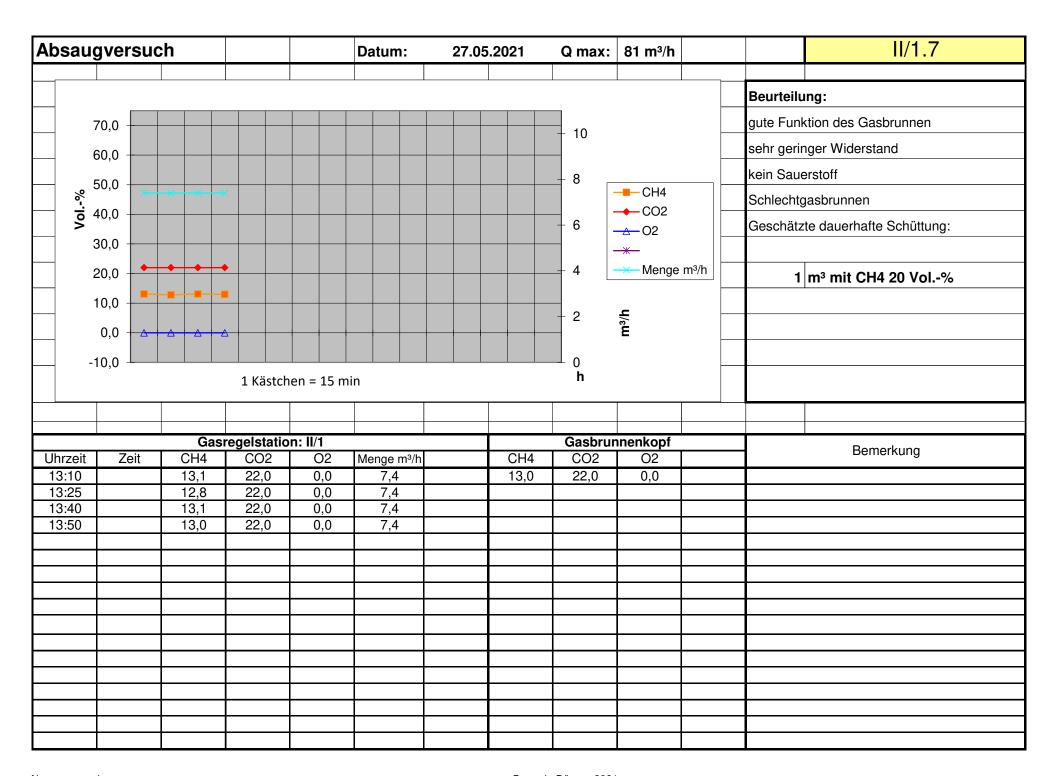



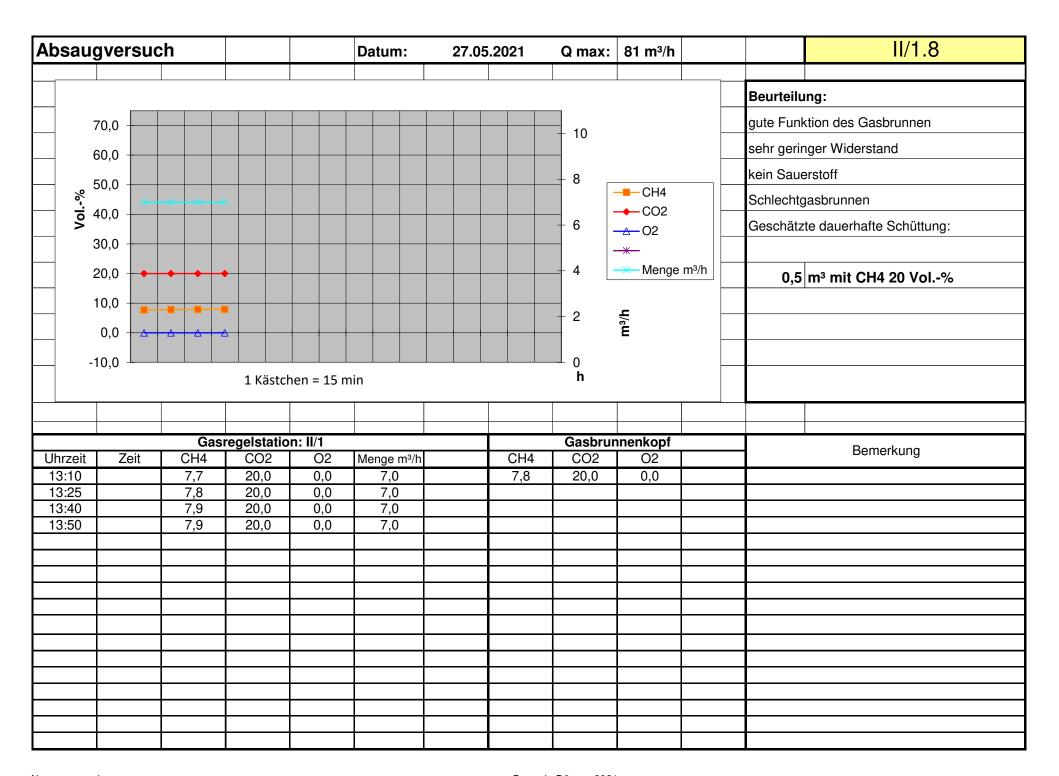



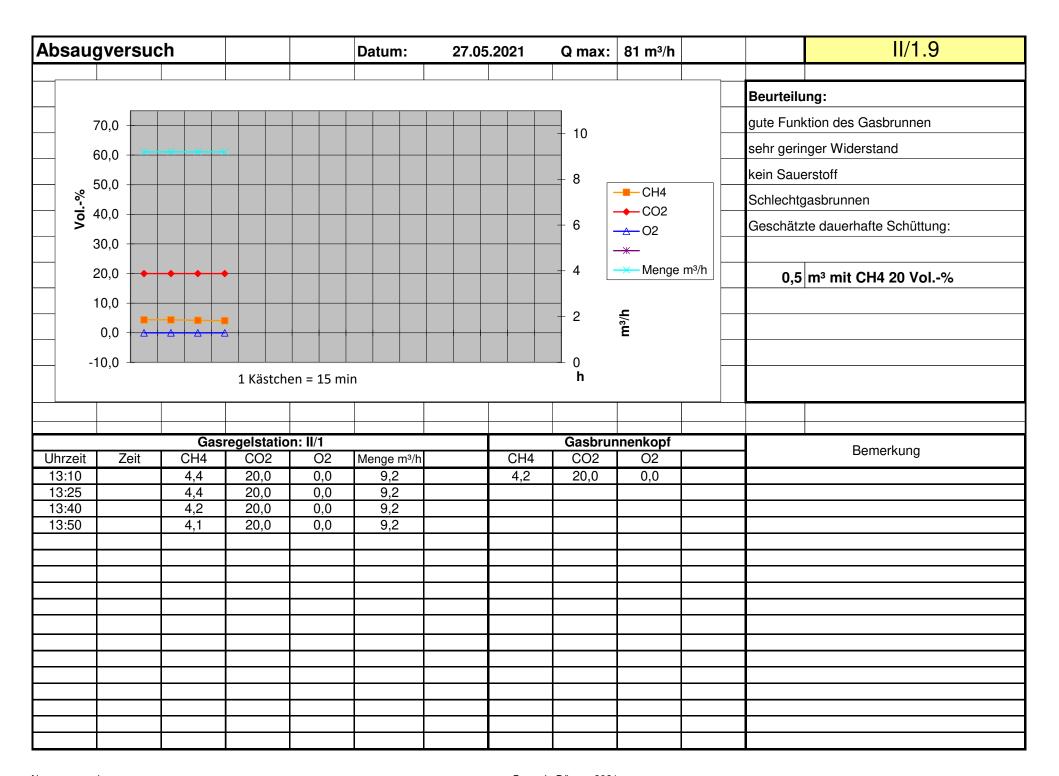



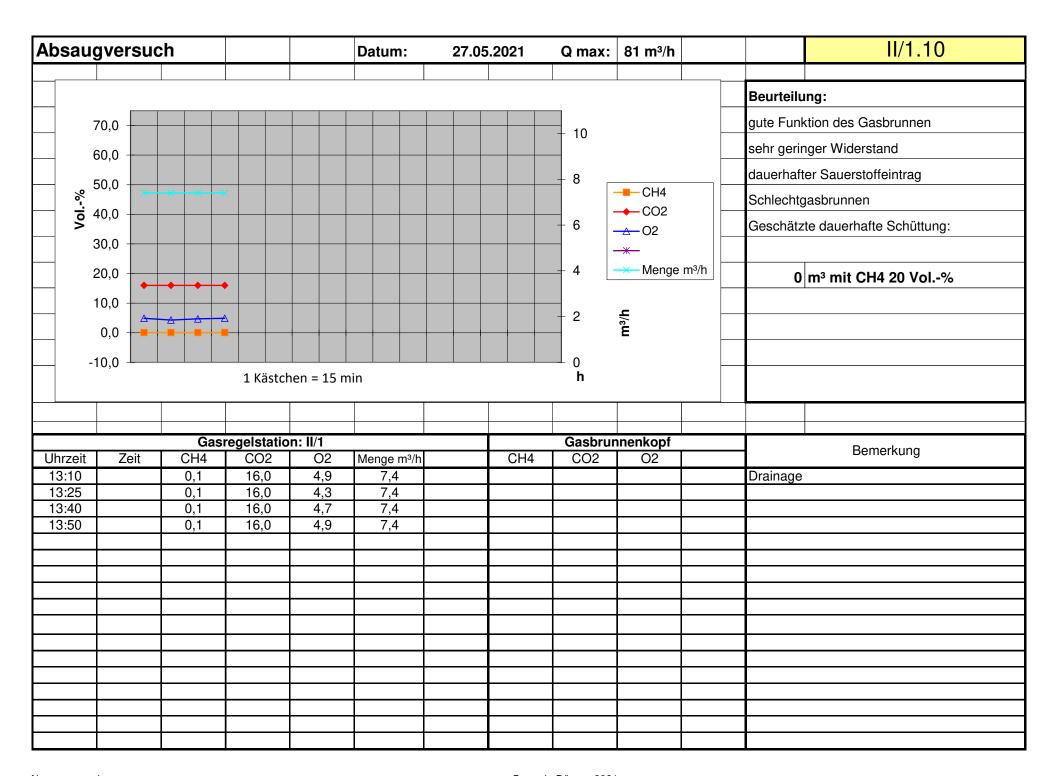



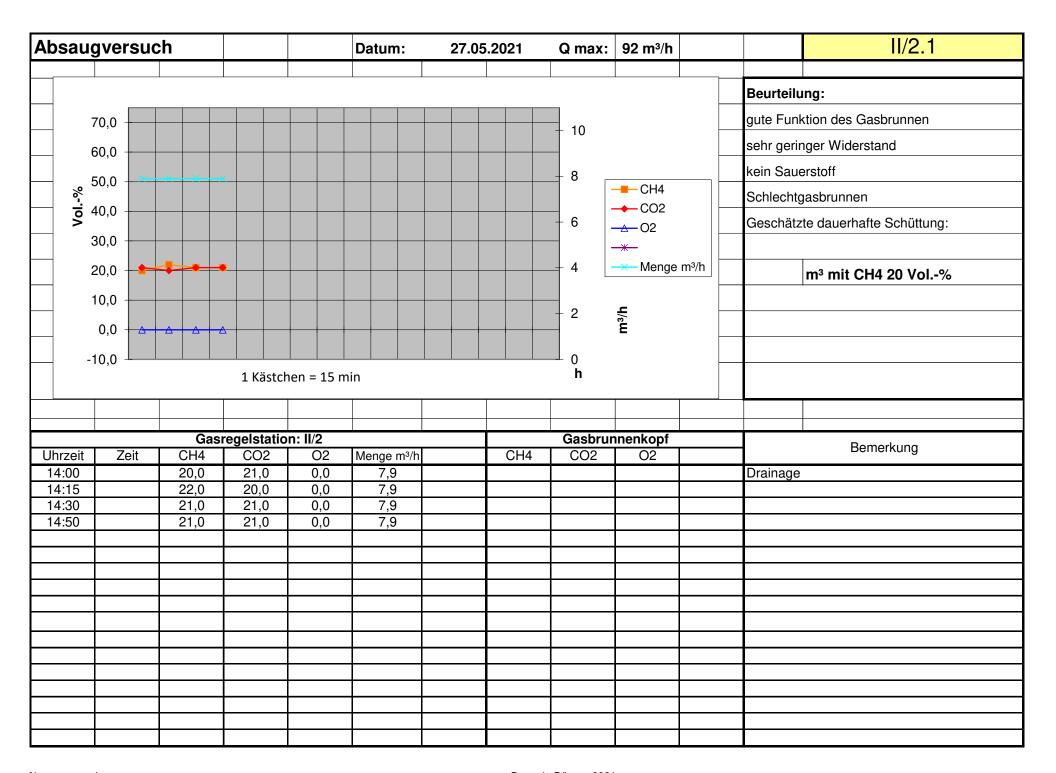



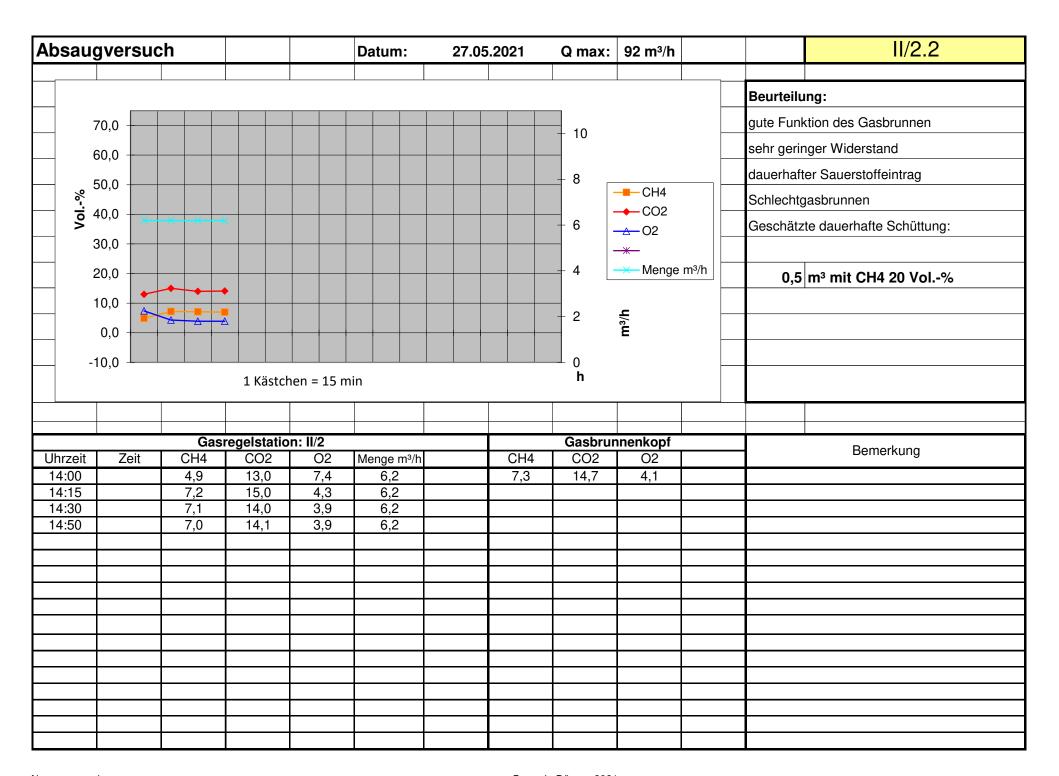



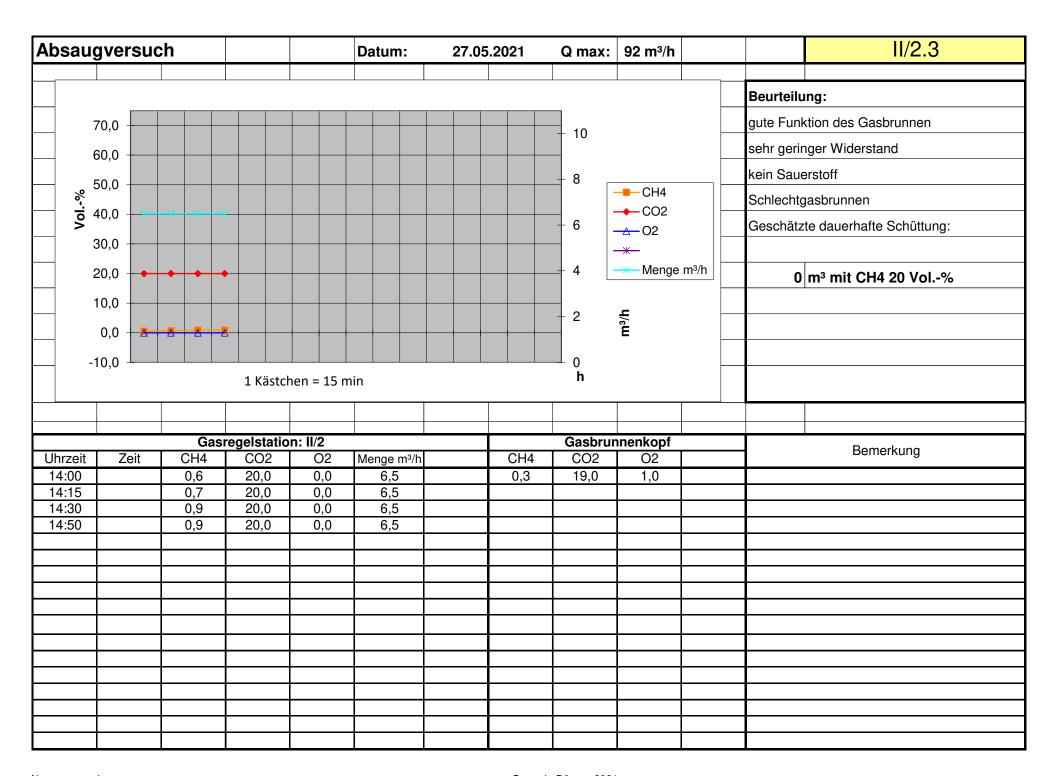



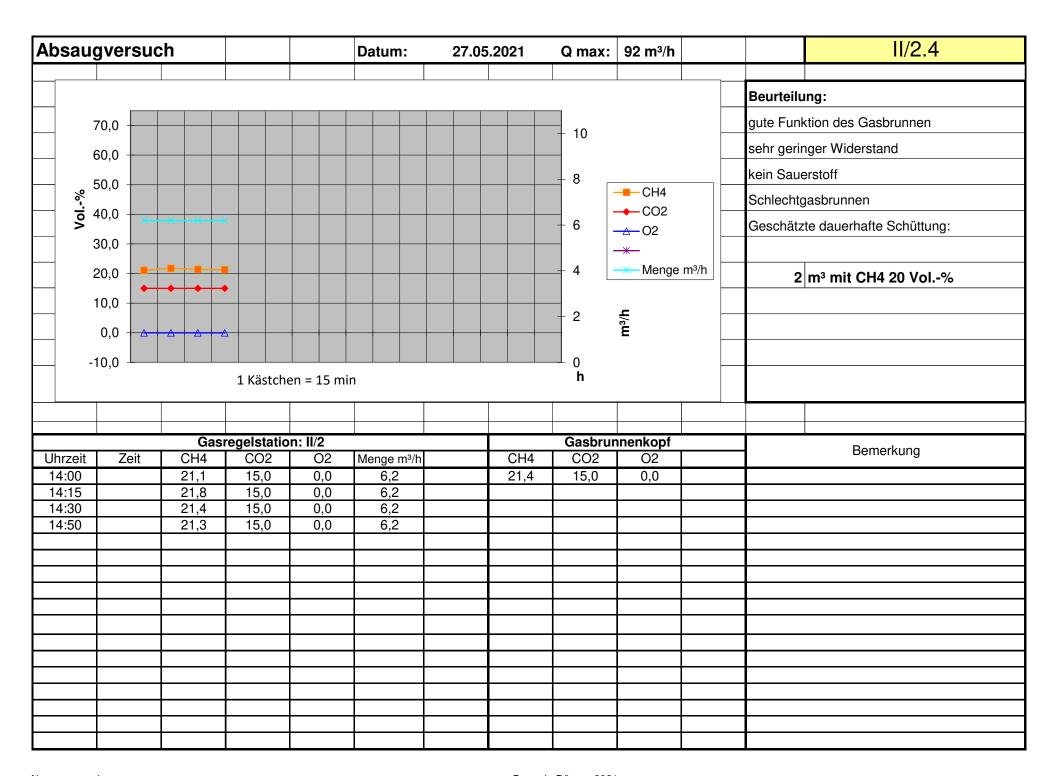



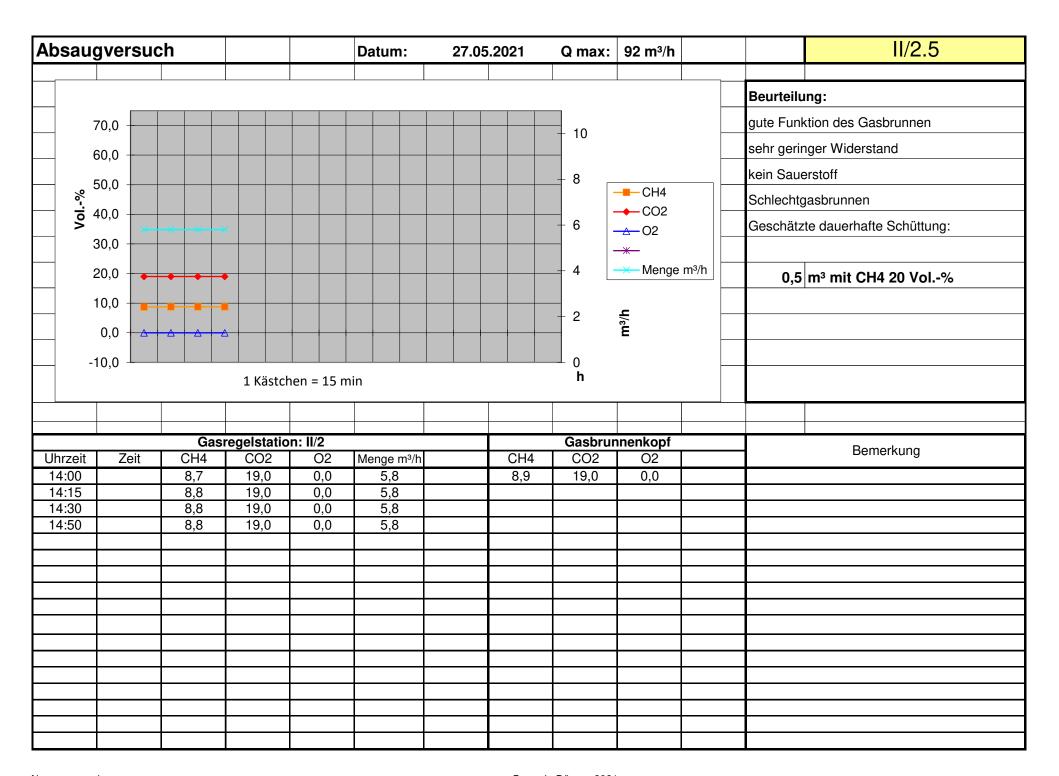



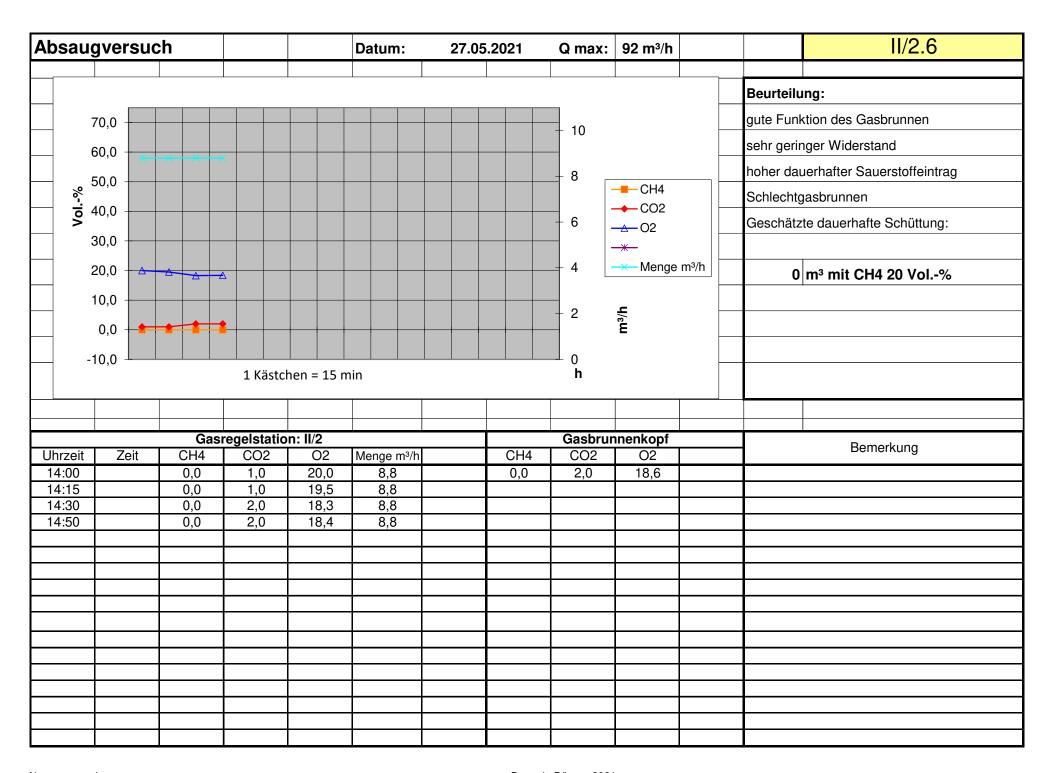



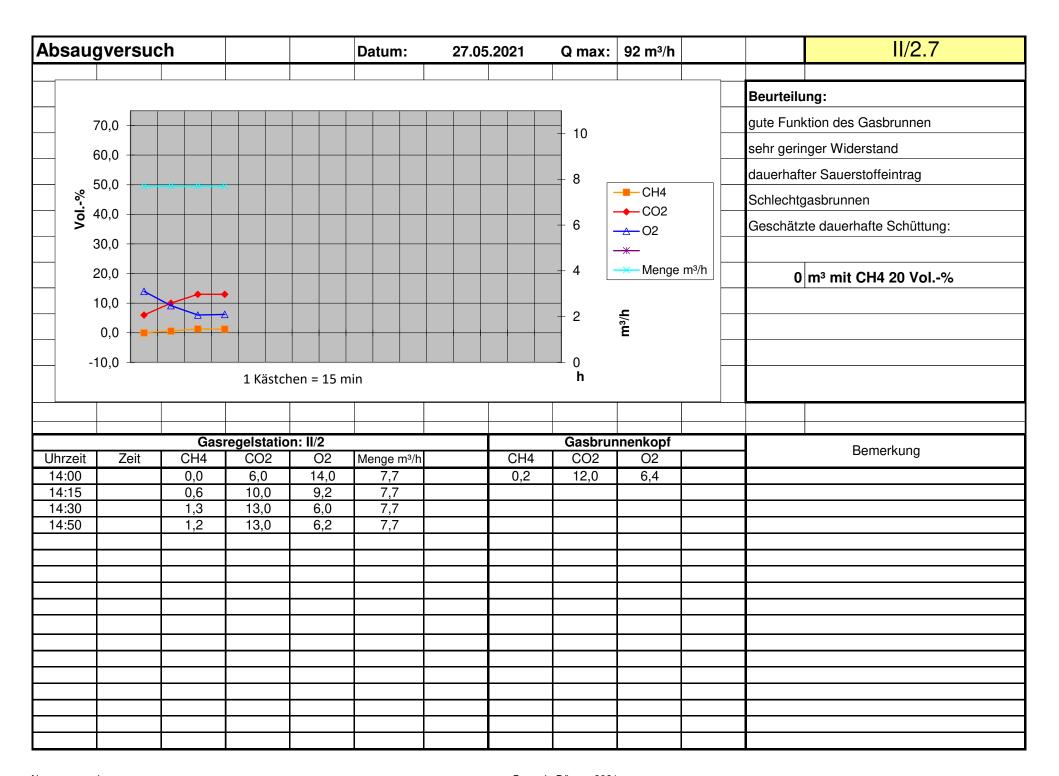



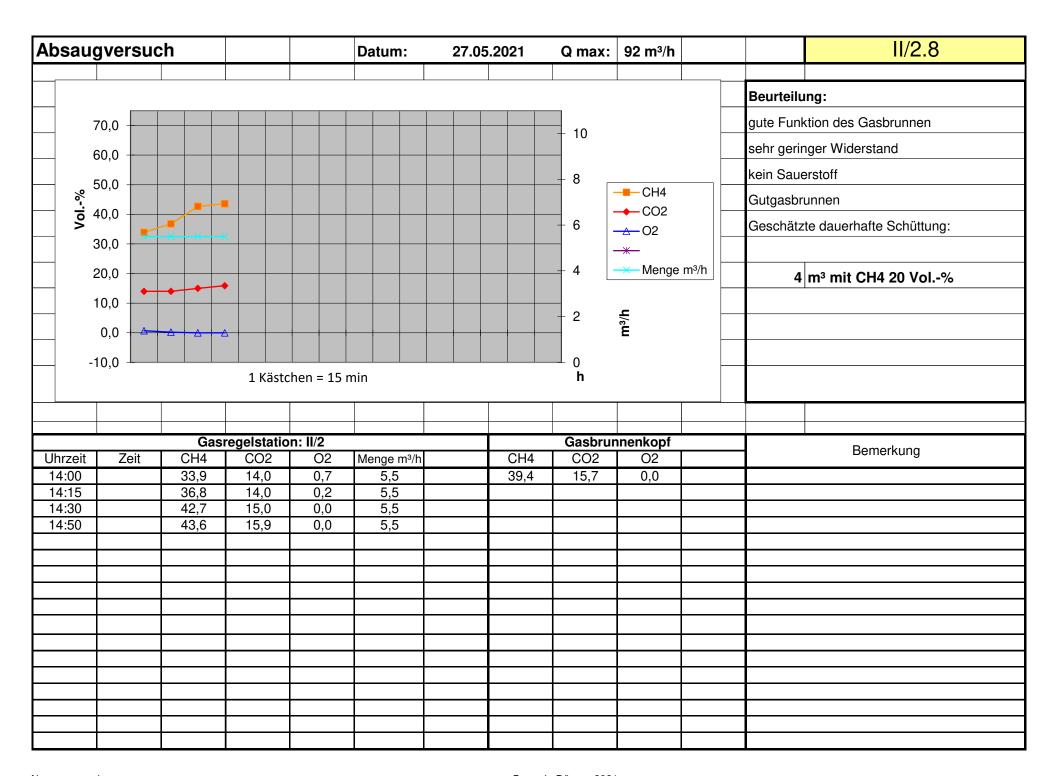



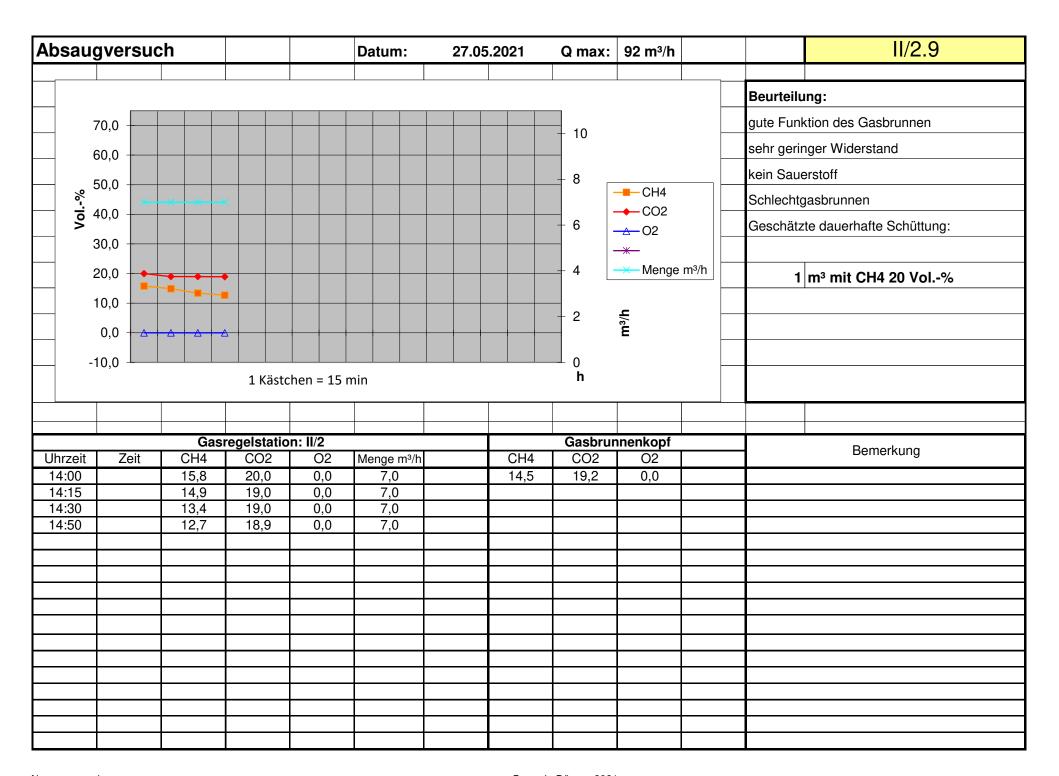



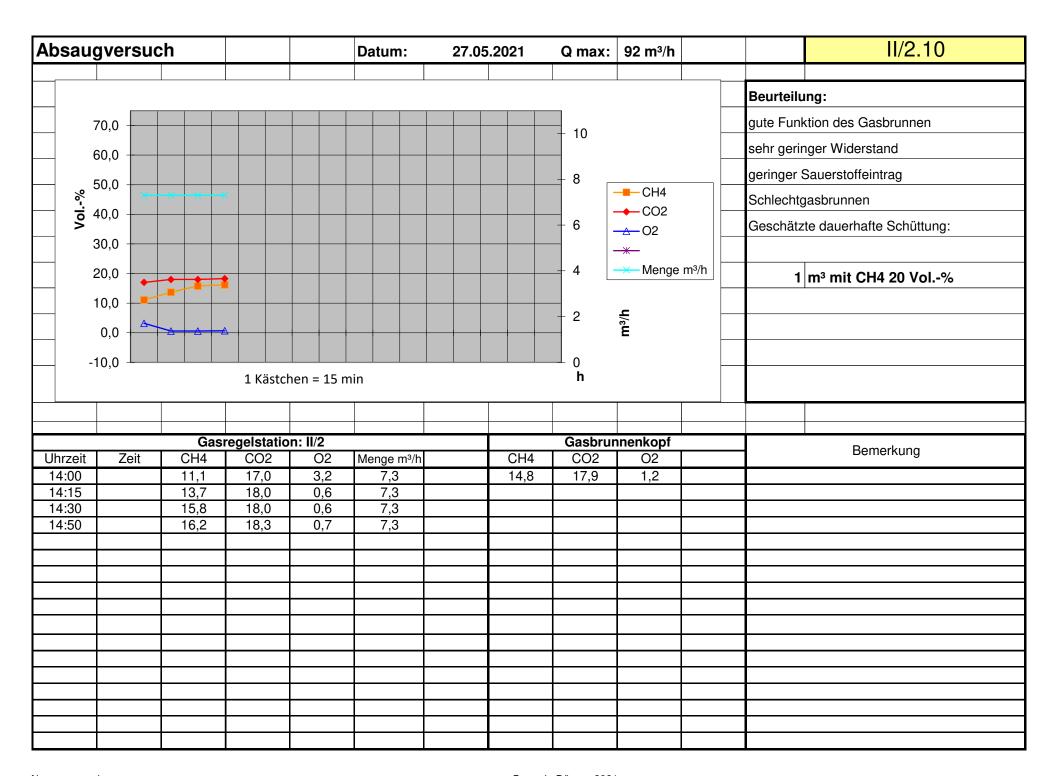



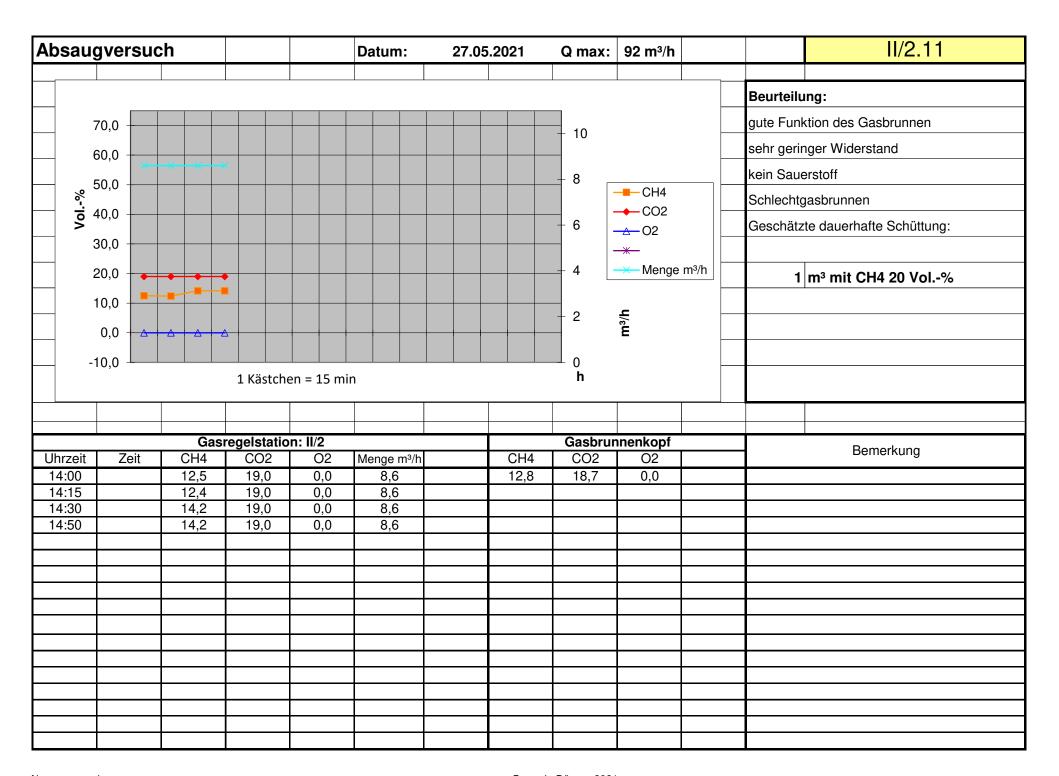



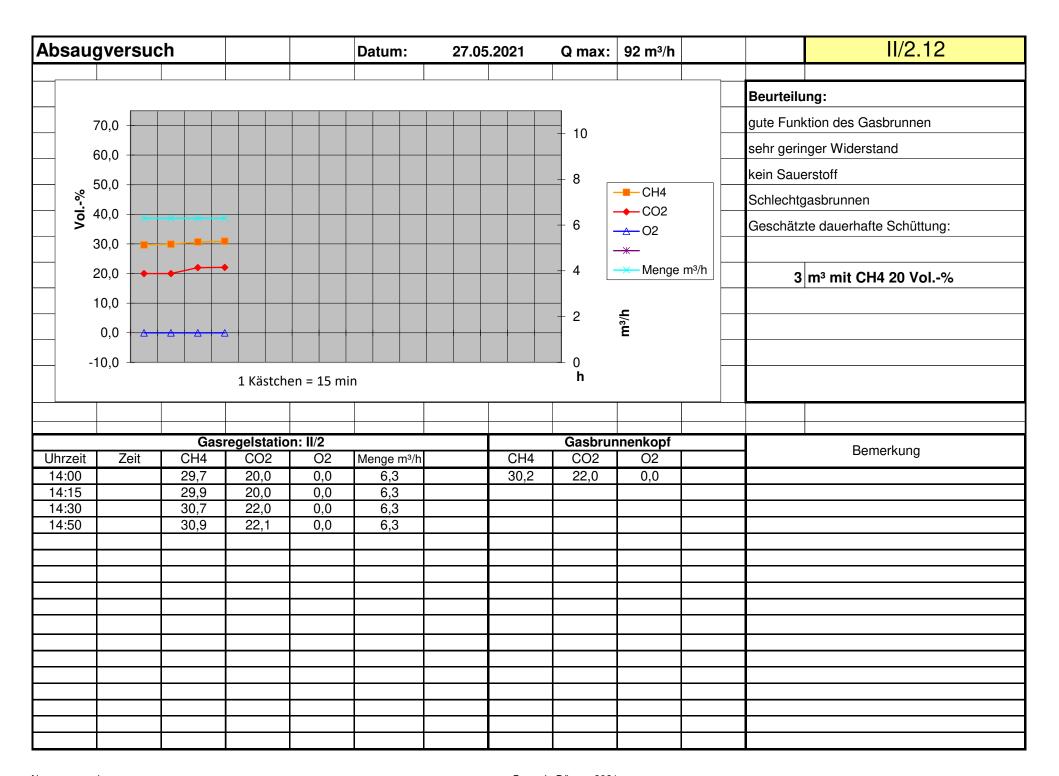



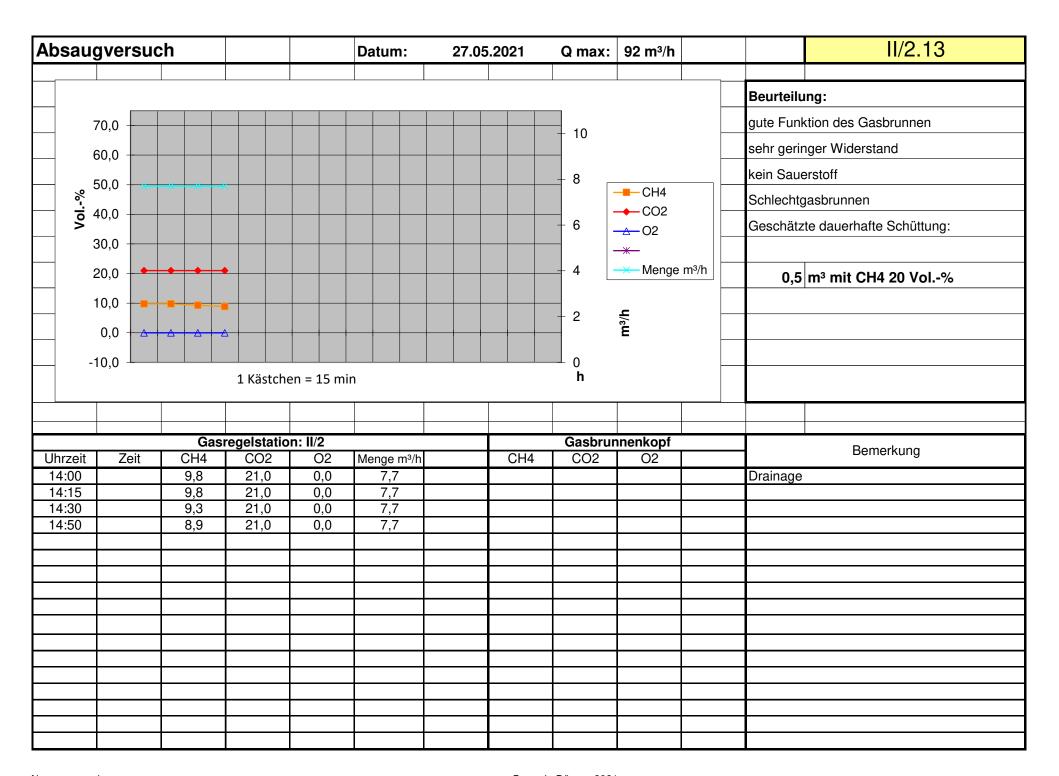



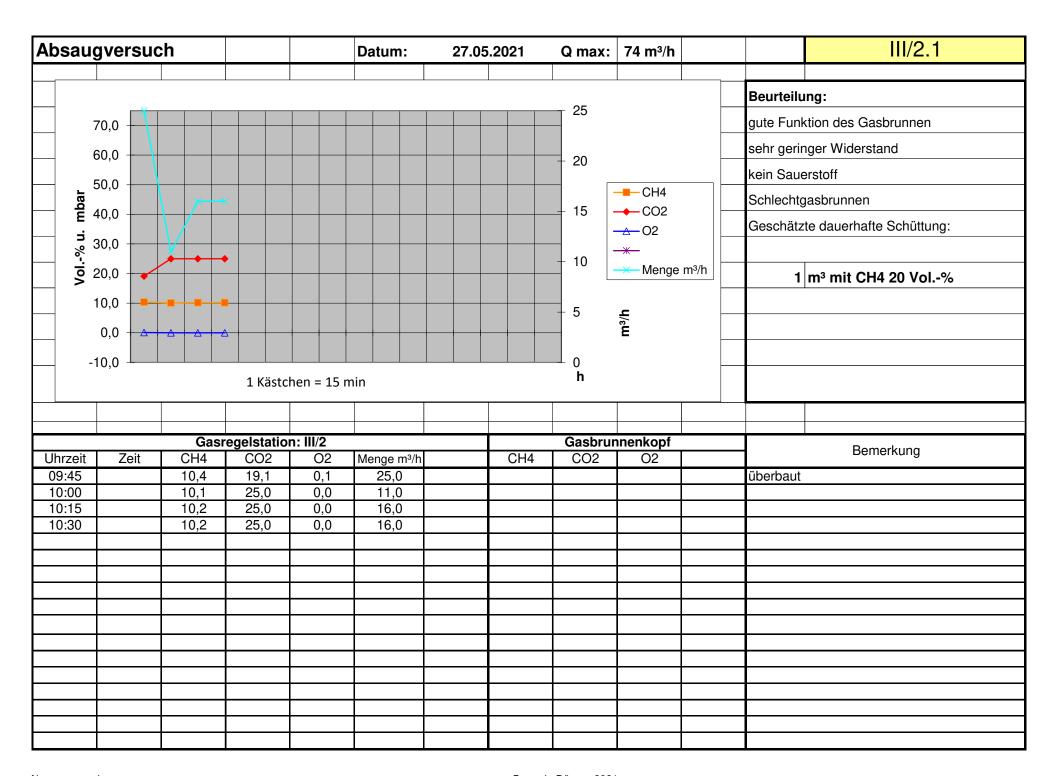



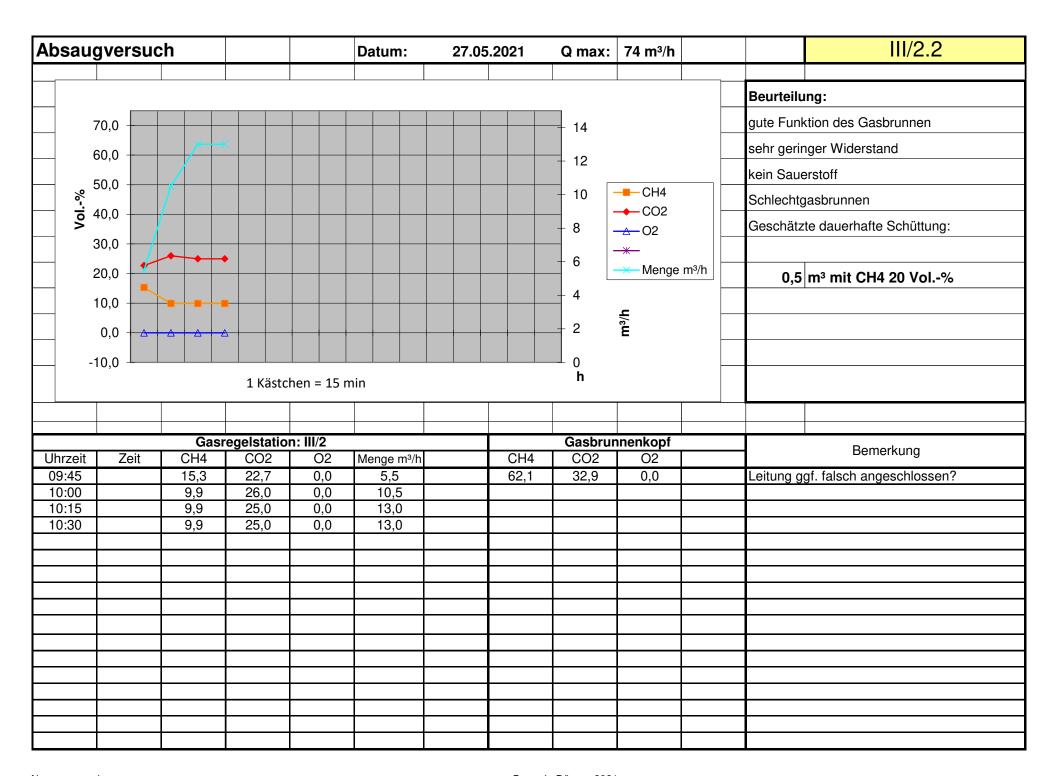



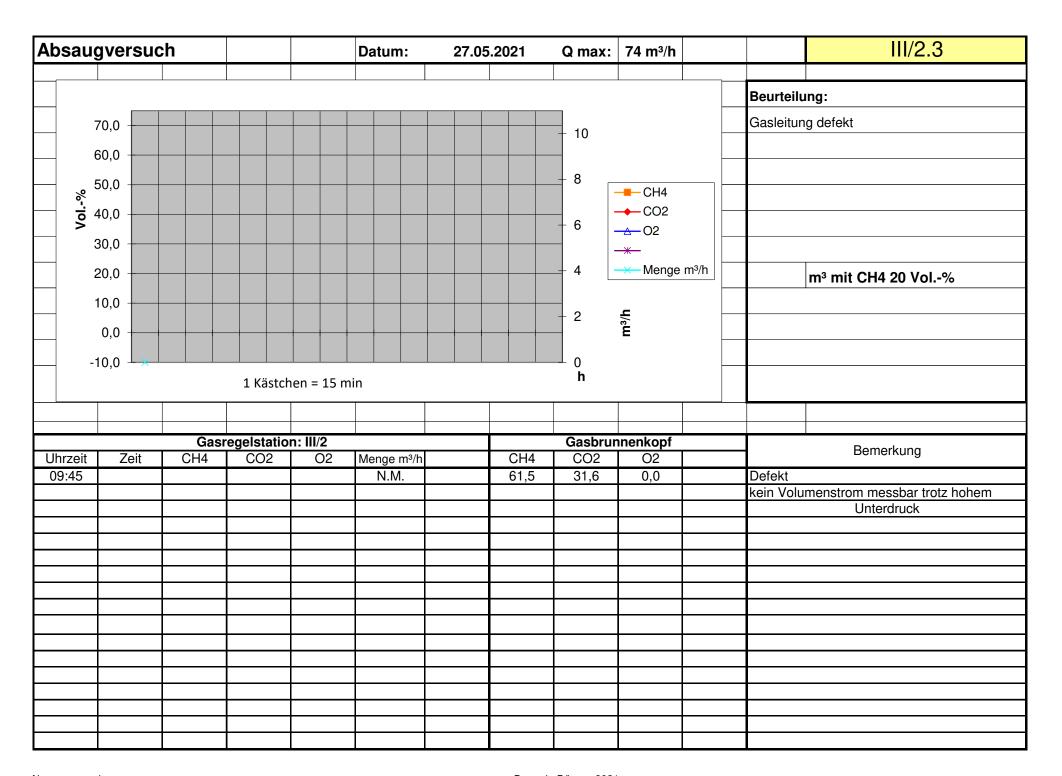



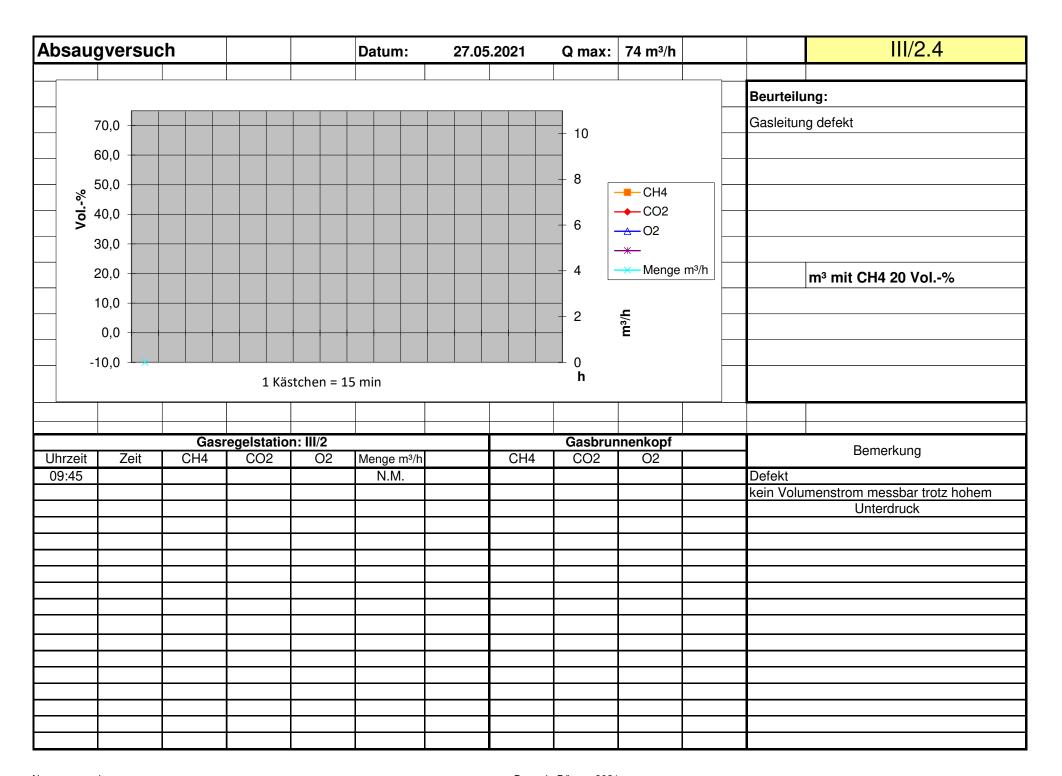



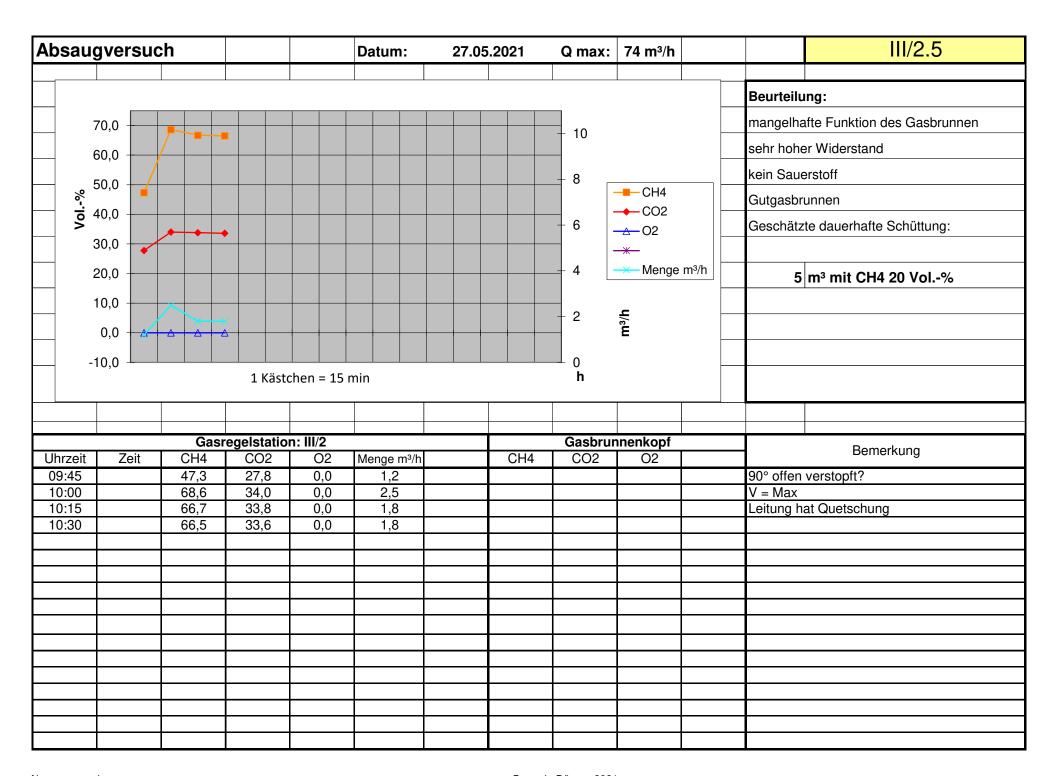



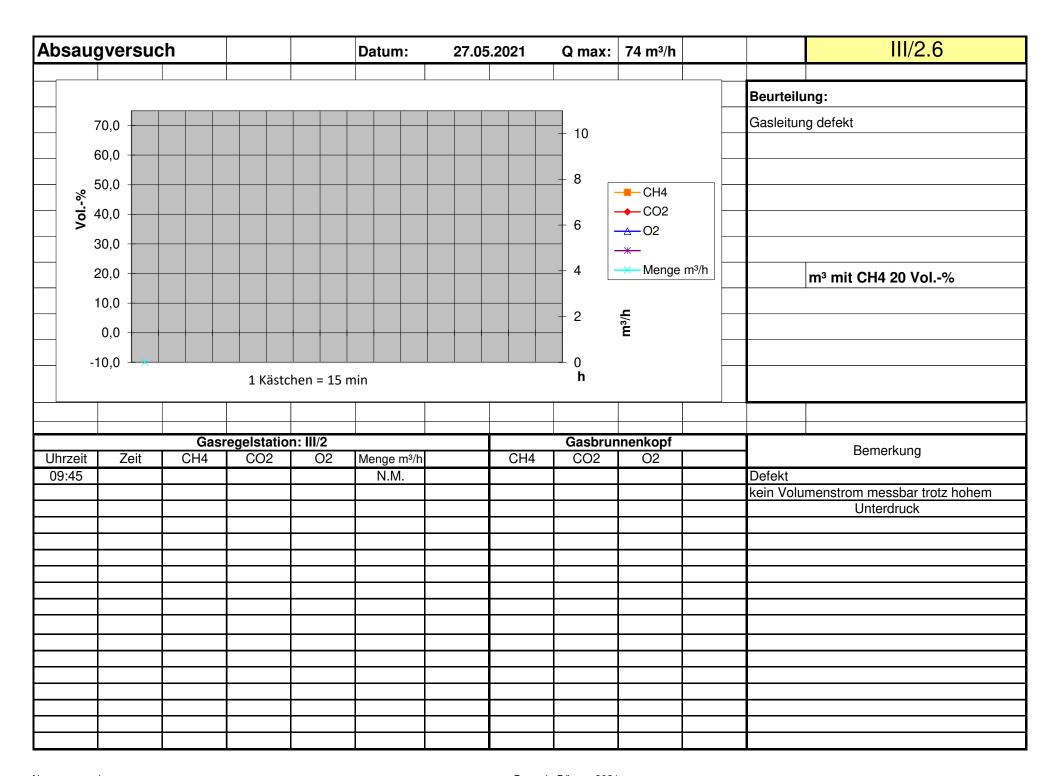



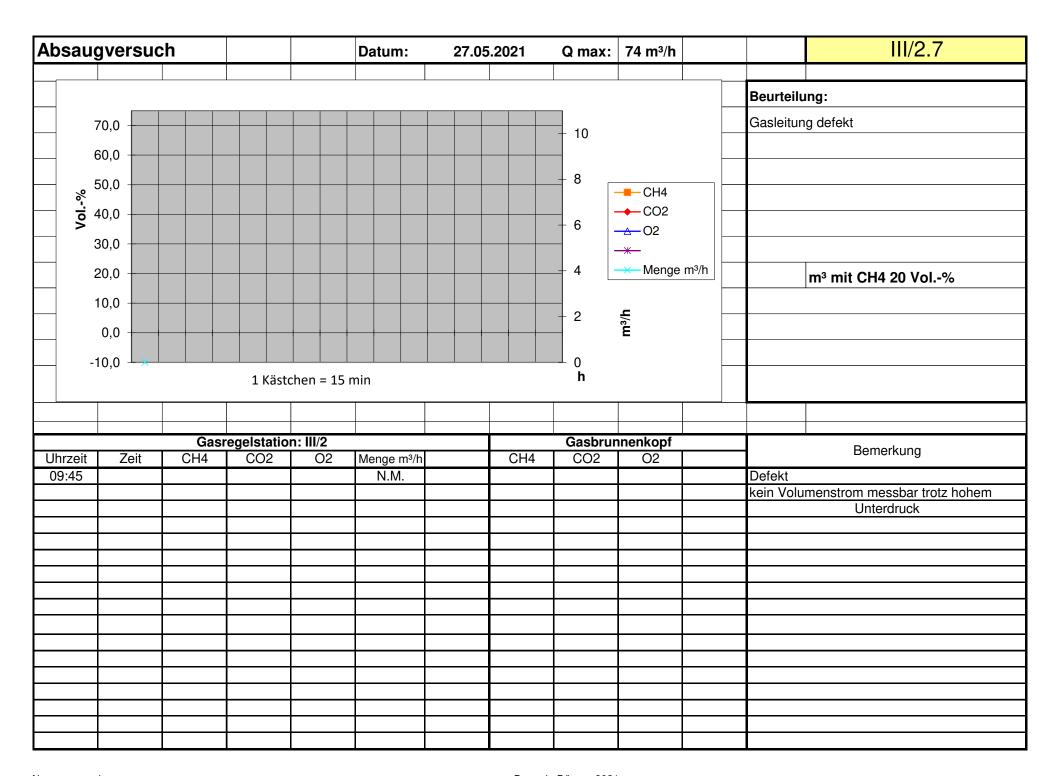



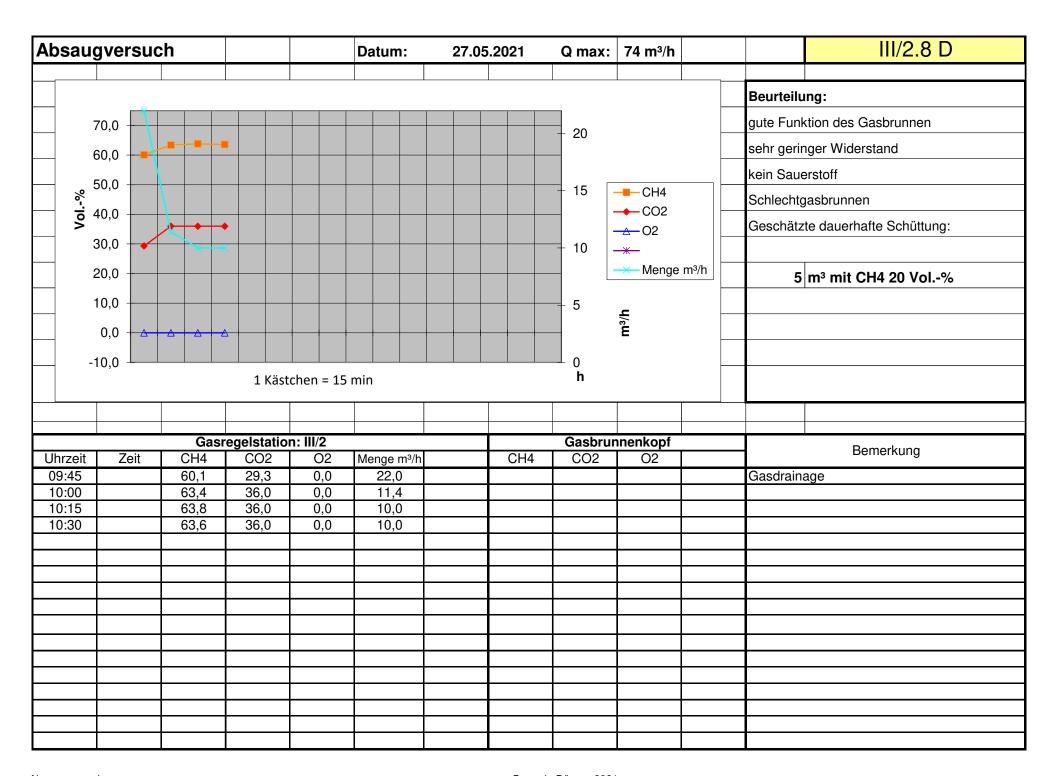



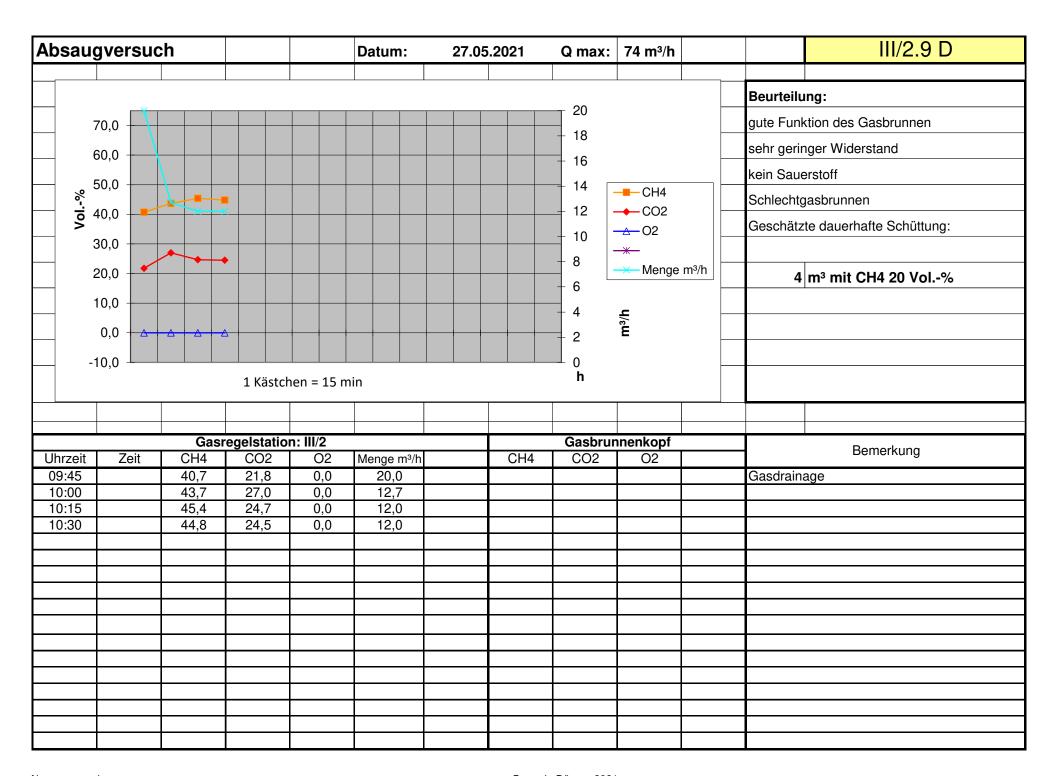



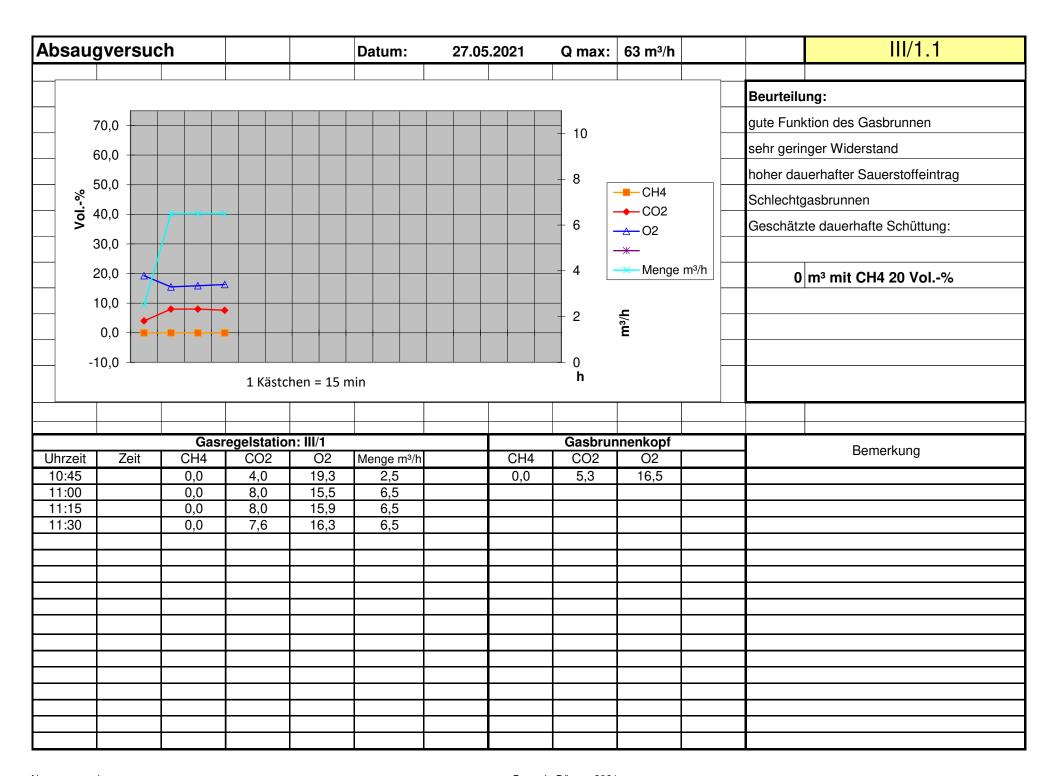



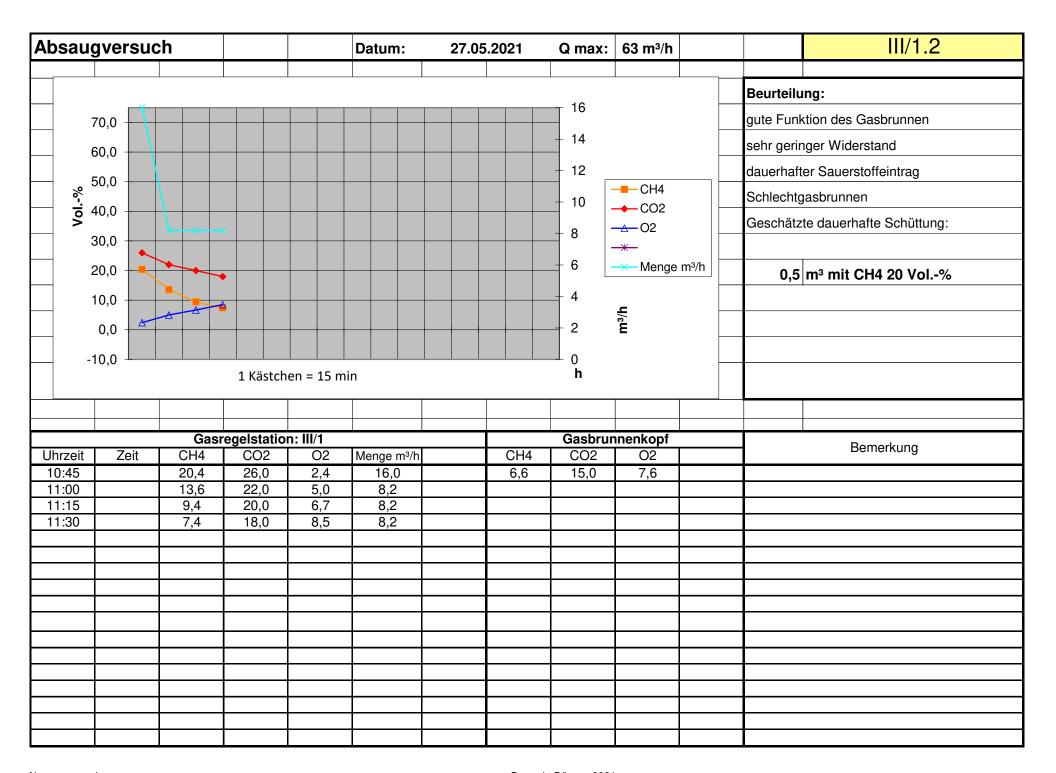



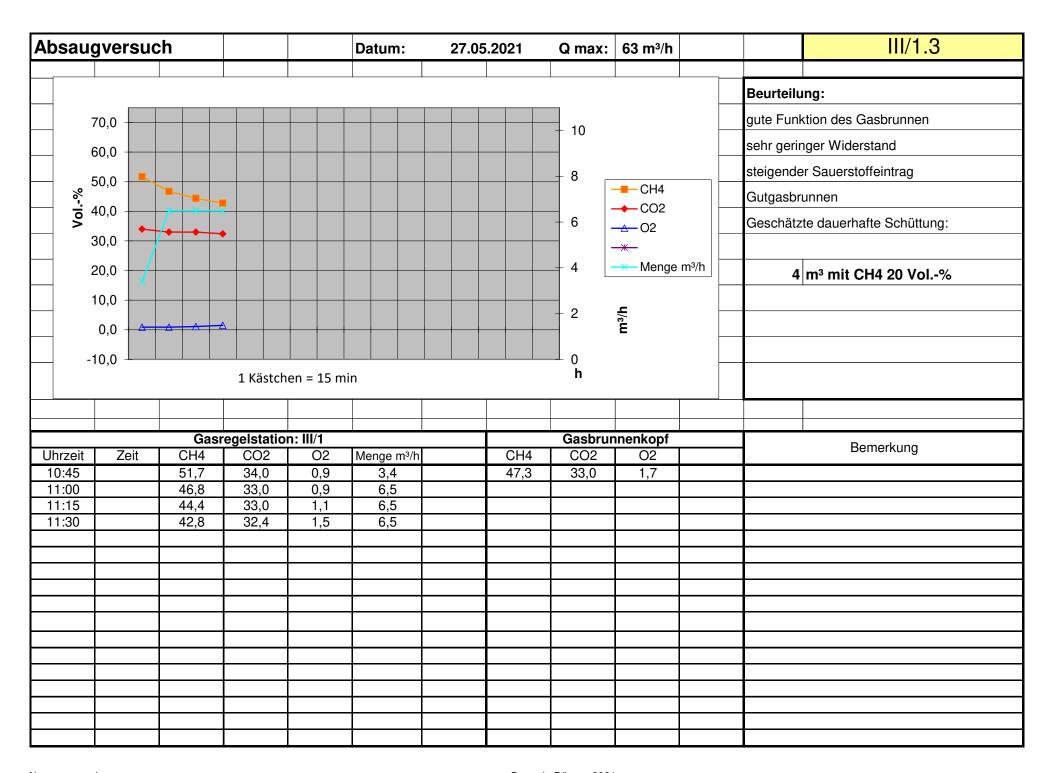



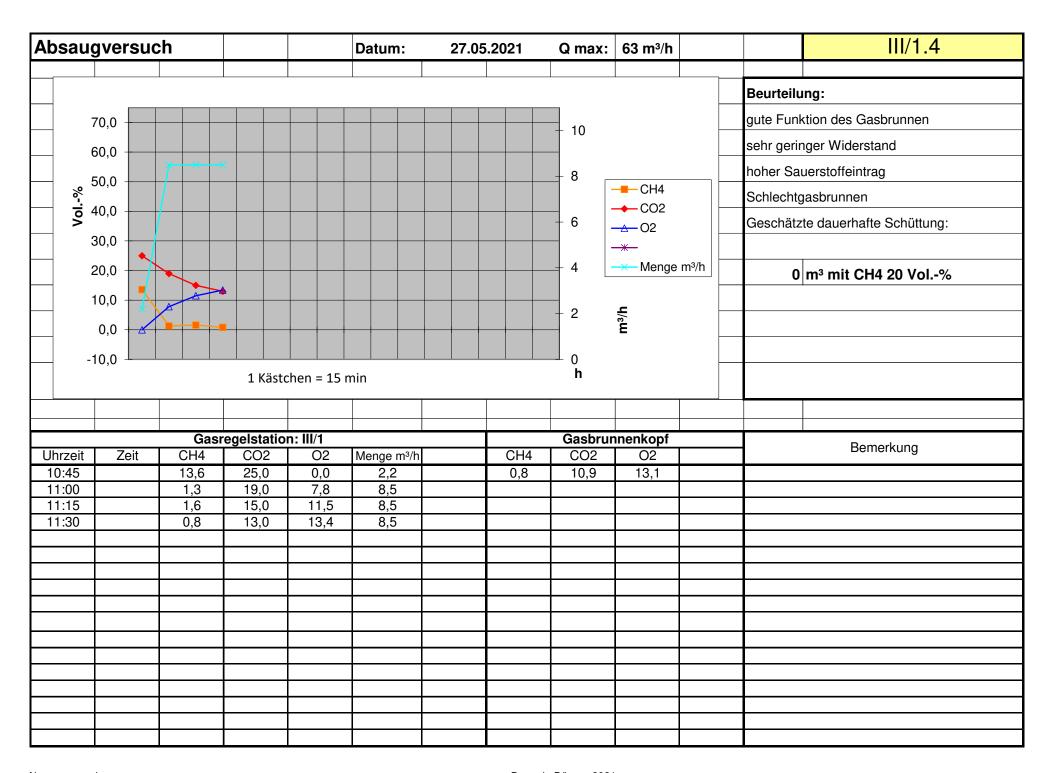



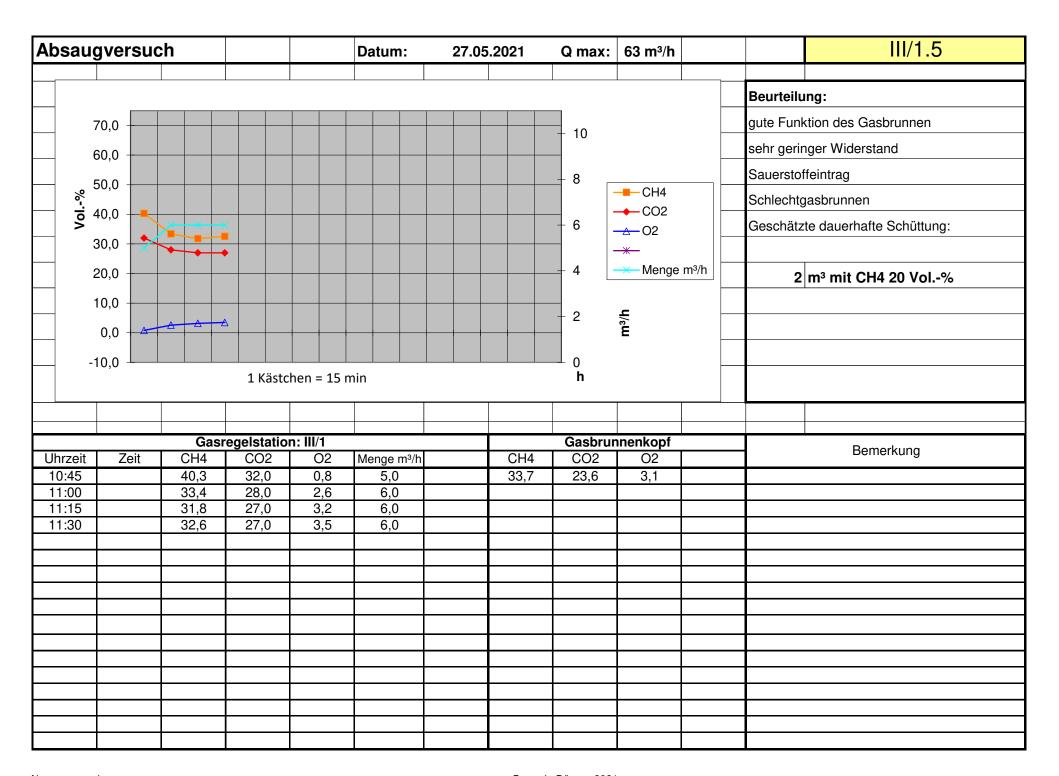



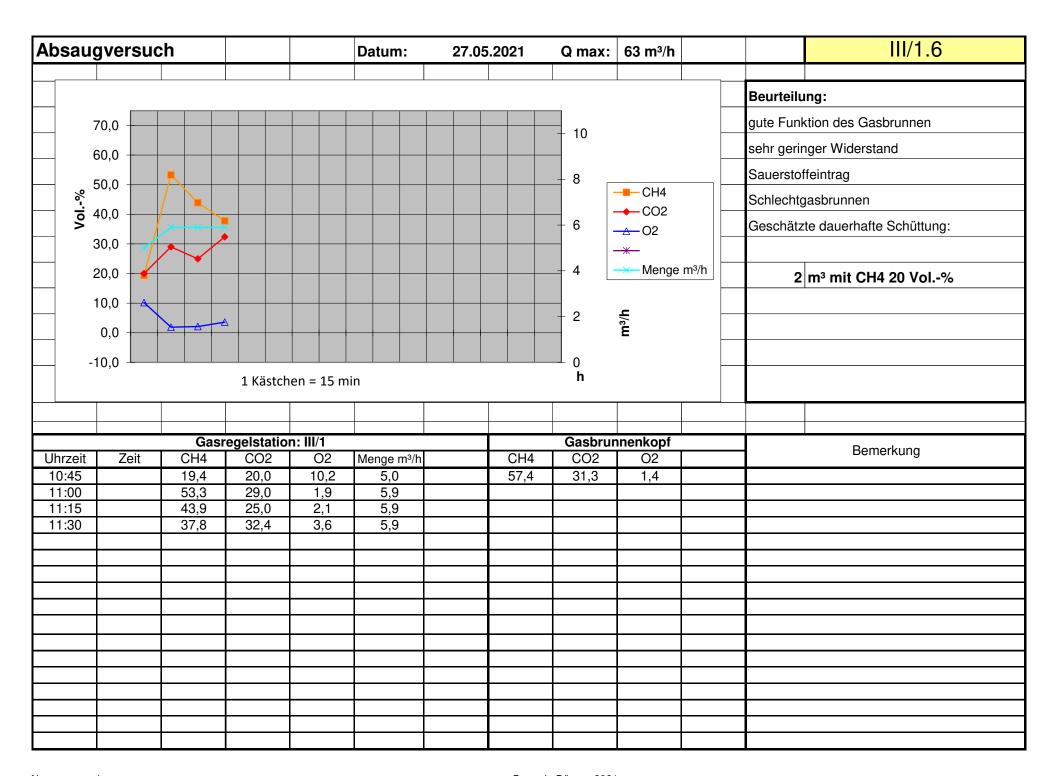



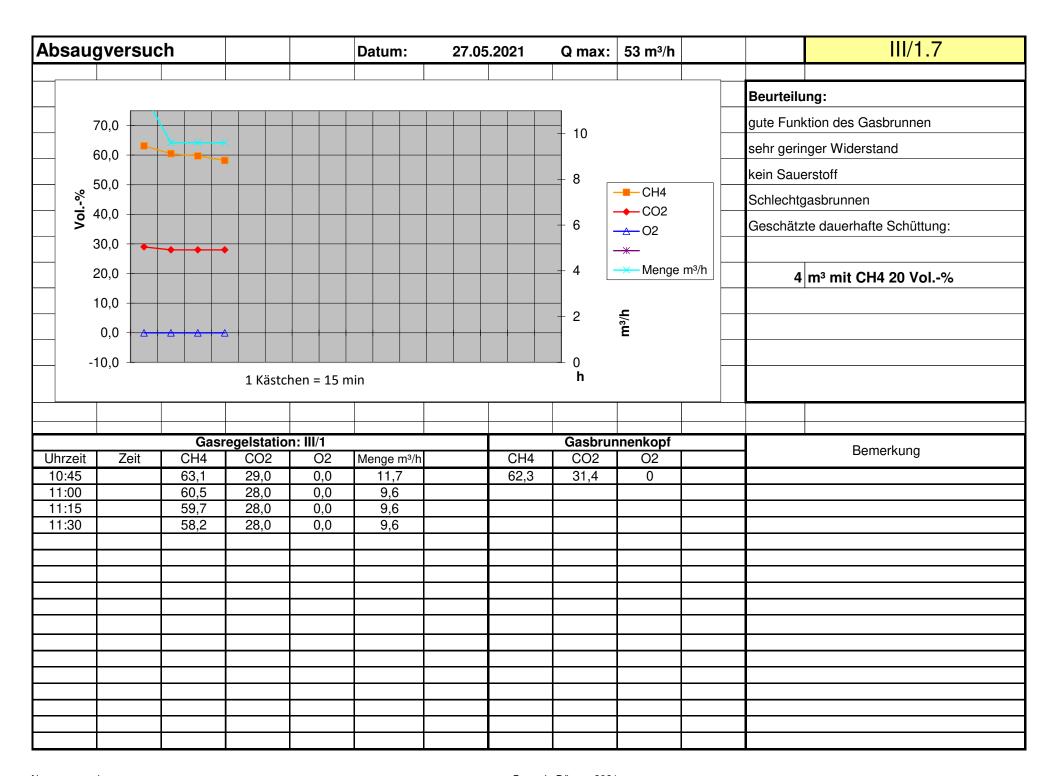



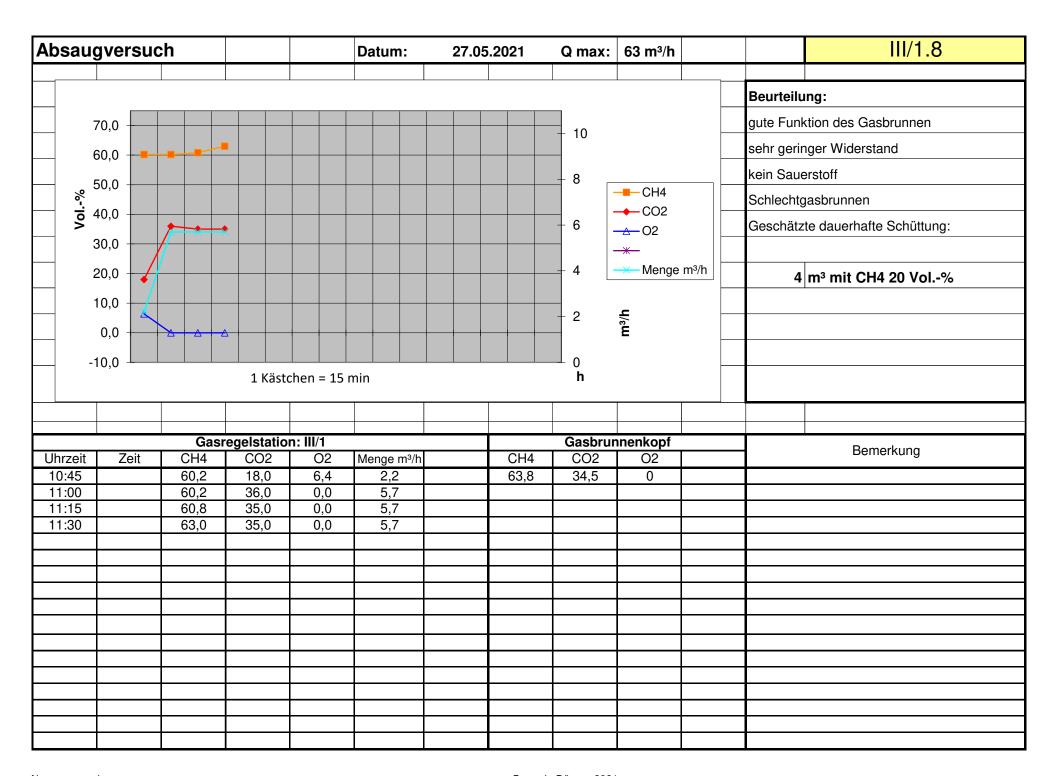



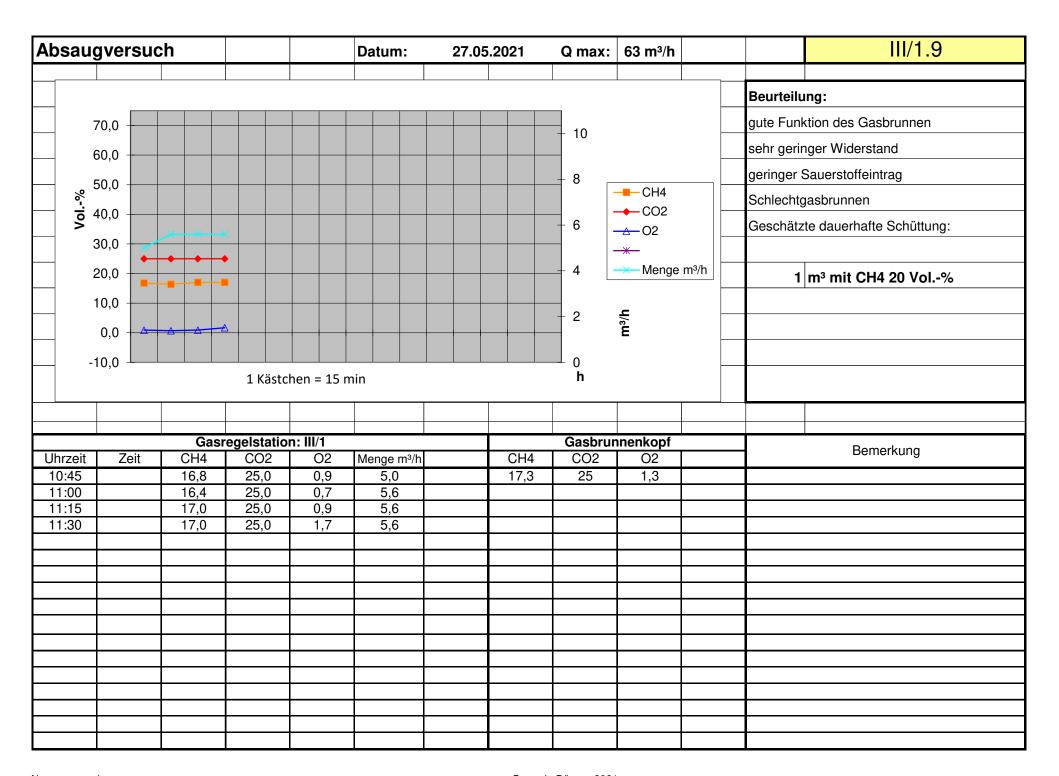
















## Anlage 8: Auswertung Kamerabefahrung Gassammelstation III/2

| Kamer       | abefahrung GS III/2          |          |                                                   | 15.07.2021  | GB III / 2.1                                         |
|-------------|------------------------------|----------|---------------------------------------------------|-------------|------------------------------------------------------|
|             |                              |          |                                                   |             |                                                      |
|             | 1,3 m                        |          | 2,2 m                                             |             | 46,0 m                                               |
|             | •                            |          |                                                   |             |                                                      |
| m           | Zone                         |          | Zustand                                           |             | Bemerkung                                            |
| 1,3         | Beginn Rohr                  |          | , sauber                                          |             |                                                      |
| 2,2         | Wasserstand in Wellschlauch  |          | reinstauung am Ende de<br>chs ca. 50 % des Durchn |             | s Rinnsal Wasser von oben kommend<br>ich am Rohrende |
| 5,7         | 90° Knick nach oben          |          | igige Anhaftungen, Rohr                           |             | num feucht, aber kein Wasserspiegel                  |
| 16,0        | Muffe                        |          | ng sauber                                         |             | gut sichtbar                                         |
| 20,0        | Muffe                        | Übergai  | ng sauber                                         | Muffe       | gut sichtbar                                         |
| 25,0        |                              |          | ne der Krustationen am F                          |             | erung klebrig, gelb                                  |
| 34,0        | Muffe                        | Überga   | ng sauber                                         |             | gut sichtbar                                         |
| 45,0        | Zunahme der Ablagerungen / W |          | sack nach vermehrter K                            |             |                                                      |
| 47,0        |                              | von 45,0 | 0 bis 47,0 m "Wassersad                           | ck" Janach  | Rohr wieder befahrbar (Aalende Kamera                |
|             |                              |          |                                                   |             |                                                      |
| <del></del> |                              |          |                                                   | <del></del> |                                                      |
|             |                              |          |                                                   |             |                                                      |
| <u> </u>    |                              |          |                                                   |             |                                                      |
|             |                              |          |                                                   |             |                                                      |
|             |                              |          |                                                   |             |                                                      |

| Kamer        | abefahrung GS III/2      |                                                      | 15.07.2021   | GB III / 2.2                             |  |  |
|--------------|--------------------------|------------------------------------------------------|--------------|------------------------------------------|--|--|
|              |                          |                                                      |              |                                          |  |  |
|              | 0,8 m                    | 1,4 m                                                |              | 45,8 m                                   |  |  |
| m            | Zone                     | Zustand                                              |              | Bemerkung                                |  |  |
| 0,8          | Beginn Rohr              | Verkrustungen sichtbar                               | sonst troo   | sonst trocken                            |  |  |
| 1,4          | Beginn Wellschlauch      | geringfügige Wassereinstauung                        |              |                                          |  |  |
| 6,0          | Muffe und 90° Knick      | Rohr frei, gute Sicht                                |              |                                          |  |  |
| 7,0          | Zunahme der Feuchtigkeit | Tropfenschicht im Rohrinneren                        |              | Sichtverschlechterung durch Feuchtigkeit |  |  |
| 16,0         | Muffe                    | Übergang sauber                                      |              | Muffe gut sichtbar                       |  |  |
| 20,0         | Muffe                    | Übergang sauber                                      | Muffe gut    | Muffe gut sichtbar                       |  |  |
| 32,0         | Muffe                    | Übergang sauber                                      | Muffe gut    | sichtbar                                 |  |  |
| 45,0<br>45,8 | Beginn Wassersack        | Rohr mit Wasser gefüllt starke klebrige Ablagerungen | woitoro D    | efahrung nicht möglich                   |  |  |
| 45,6         |                          | Ende des Wassersacks nicht sichtb                    | ar weitele b | eramung mem mognen                       |  |  |
|              |                          | LINE GES WASSETSACKS HICH SICHED                     | ui e         |                                          |  |  |
|              |                          |                                                      |              |                                          |  |  |
|              |                          |                                                      |              |                                          |  |  |
|              |                          |                                                      |              |                                          |  |  |
|              |                          |                                                      |              |                                          |  |  |
|              |                          |                                                      |              |                                          |  |  |
|              |                          |                                                      |              |                                          |  |  |

| Kamer | abefahrung GS III/2              |       |                                                |                              | 15.07        | .2021     | GB III / 2.3                     |
|-------|----------------------------------|-------|------------------------------------------------|------------------------------|--------------|-----------|----------------------------------|
|       | 1,2                              |       |                                                | 43,7                         |              |           | 46,0 m                           |
|       | 1,2                              |       |                                                | 40,7                         |              |           | +0,0 III                         |
|       |                                  |       |                                                |                              |              |           |                                  |
| m     | Zone                             |       |                                                | Zustand                      |              |           | Bemerkung                        |
| 1,2   | Beginn Wellschlauch              |       | Wasserein                                      | stauung (gering)             |              |           |                                  |
| 2,3   | Ende Wassereinstauung<br>Muffe   |       | مامينا!مام مام                                 | lath an                      |              | weitere B | efahrung möglich mit guter Sicht |
| 5,0   | Muπe<br>weiterer Rohrverlauf     |       | deutlich sid                                   |                              | r waitaahaad |           |                                  |
| 15,0  | Muffe                            |       | geringfügige Anhaftungen, Rohr weitgehend frei |                              |              |           |                                  |
| 20,0  | Muffe                            |       | gut sichtbar                                   |                              |              |           |                                  |
| 20,0  | Widii O                          |       | leichte Zunahme der Ablagerungen               |                              |              |           |                                  |
| 22,8  | Zunahme der Feuchtigkeit         |       | Kondensat am Rohrboden                         |                              |              |           |                                  |
| 34,0  | Muffe                            |       | gut sichtba                                    |                              |              |           |                                  |
| 43,0  | Rohr stark mit Kondensat beschla |       |                                                | Zunahme der Ablage           | rungen       | Ablagerui | ngen klebrig, gelb               |
| 45,5  | Beginn Wassersack                |       |                                                |                              |              |           |                                  |
| 46,0  | Wasserstand                      |       | Wasserein                                      | stauung mit einigen <i>i</i> | Ablagerunge  |           |                                  |
| 48,50 | weiterhin Bestehen eines Wasser  | sacks |                                                |                              |              |           | nt sichtbar, weitere Befahrung   |
|       |                                  |       |                                                |                              |              | nicht mög | glich                            |
|       |                                  |       |                                                |                              |              |           |                                  |
|       |                                  |       |                                                |                              |              |           |                                  |
|       |                                  |       |                                                |                              |              |           |                                  |

| Kamer    | abefahrung GS III/2            |          |                                        | 15.07             | .2021        | GB III / 2.4            |
|----------|--------------------------------|----------|----------------------------------------|-------------------|--------------|-------------------------|
| 9        |                                |          |                                        |                   |              |                         |
|          | 0,5 m                          |          | 1,0 m                                  |                   |              | 38,2 m                  |
|          |                                |          |                                        |                   |              |                         |
| m        | Zone                           |          | Zustan                                 | d                 |              | Bemerkung               |
| 0,5      | Beginn Rohr                    | relativ  | starke Anhaftunge                      | n                 |              |                         |
| 1,0      | Wassereinstauung vor Wellschla | uch Wass | er bis 2,6 m                           |                   |              |                         |
| 4,0      | Muffe mit 90° Knick            | gut sid  |                                        |                   |              |                         |
| 7,0      | Muffe                          | gut sid  |                                        |                   |              |                         |
| 20,0     | Muffe                          | gut sid  | chtbar, Anhaftunge                     | n gering          |              |                         |
| 23,0     | Zunahme der Feuchtigkeit       |          |                                        |                   | Sicht erschv | vert                    |
| 33,0     | Muffe                          | gut er   | kennbar trotz schle                    | chter Sicht       | O'alatalar   | Describe a data water a |
| 38,2     | Zunahme der Ablagerungen       |          | Krustationen auf F<br>dem Kondensatblä |                   |              | Dunst beeinträchtigt    |
| <u> </u> | -                              | außer    | uem Kondensalbia                       | Schen oder Schaun | -            |                         |
|          |                                |          |                                        |                   |              |                         |
|          |                                |          |                                        |                   |              |                         |
|          | 1                              |          |                                        |                   |              |                         |
|          |                                |          |                                        |                   |              |                         |
|          |                                |          |                                        |                   |              |                         |
|          |                                |          |                                        |                   |              |                         |
|          |                                |          |                                        |                   |              |                         |

| Kamer             | abefahrung GS III/2                                 | 15.0                                                                                        | 7.2021             | GB III / 2.5 |
|-------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------|--------------|
|                   | 0,2 m                                               | 1,4 m                                                                                       |                    | 45,8         |
|                   |                                                     |                                                                                             |                    |              |
| m                 | Zone                                                | Zustand                                                                                     |                    | Bemerkung    |
| 0,2<br>0,9<br>3,4 | Beginn Rohr Beginn Wellschlauch Muffe mit 90° Knick | starke Anhaftungen niedrige Wassereinstauung, Verkrustunge deutlich gut sichtbar, Rohr frei | n                  |              |
| 7,0               | Muffe                                               | gut sichtbar                                                                                |                    |              |
| 20,0<br>33,5      | Muffe<br>Muffe                                      | gut sichtbar, Anhaftungen gering<br>gut sichtbar, geringe Ablagerungen                      | +                  |              |
| 38,2              | Zunahme Feuchtigkeit, Kondensat                     | Schaum / Tropfen an der Rohrwand                                                            | Rohr jedoch sauber |              |
|                   |                                                     |                                                                                             |                    |              |
|                   |                                                     |                                                                                             |                    |              |

| Kamer | abefahrung GS III/2                           |        |             |                    | 15.07          | .2021 | GB III / 2.6 |
|-------|-----------------------------------------------|--------|-------------|--------------------|----------------|-------|--------------|
|       | 0,5 m                                         |        |             | 1,0 m              |                |       | 20,0 m       |
| m     | Zone                                          |        |             | Zustand            |                |       | Bemerkung    |
| 0,5   | Beginn Rohr                                   |        | starke Abla | agerungen erkenr   | bar            |       |              |
| 1,0   | starke Ablagerungen am Üb<br>zum Wellschlauch | ergang | geringe Wa  | assereinstauung (  | erkennbar      |       |              |
| 3,0   | Muffe mit 90° Knick                           |        |             |                    |                |       |              |
| 7,0   | Muffe                                         |        |             | it gut, Anhaftunge |                |       |              |
| 20,0  | Muffe                                         |        | davor relat | iv starke Ablageri | ungen sichtbar |       |              |
| 34,0  | Muffe                                         |        | Sichtbarke  | it gut, Anhaftunge | en vorhanden   |       |              |
|       |                                               |        |             |                    |                |       |              |
|       |                                               |        |             |                    |                |       |              |
|       |                                               |        |             |                    |                |       |              |
|       |                                               |        |             |                    |                |       |              |
|       |                                               |        |             |                    |                |       |              |
|       |                                               |        |             |                    |                |       |              |
|       |                                               |        |             |                    |                |       |              |
|       |                                               |        |             |                    |                |       |              |

| Kamer      | abefahrung                | GS III/2            |                                           | 15.07.202       | GB III / 2.7 |  |
|------------|---------------------------|---------------------|-------------------------------------------|-----------------|--------------|--|
|            |                           |                     |                                           |                 |              |  |
|            | 0,2 m                     |                     | 0,9 m                                     |                 | 36,0 m       |  |
|            |                           |                     |                                           |                 |              |  |
| m          |                           | Zone                | Zustano                                   | ı               | Bemerkung    |  |
| 0,2        | Beginn Rohr               |                     | starke Ablagerungen am I                  | Rohrbeginn      |              |  |
| 0,9        | Wassereinstauu            | ing am Wellschlauch | niedriger Wassereinstau                   |                 |              |  |
| 3,0<br>7,0 | Muffe mit 90° Kr<br>Muffe | nick                | Ablagerungen vorhanden                    | hla wa wa wa wa |              |  |
| 20,0       | Muffe                     |                     | Sicht gut, nahezu keine A<br>gut sichtbar | biagerungen     |              |  |
| 30,0       |                           | nsat an Rohrwand    | gut sichtbal                              |                 |              |  |
| 34,0       | Muffe                     | ioat an i tom wand  | gut sichtbar, geringe Abla                | gerungen        |              |  |
| 36,0       | Rohr frei                 |                     | Kondensat erkennbar                       | <u> </u>        |              |  |
|            |                           |                     |                                           |                 |              |  |
|            |                           |                     |                                           |                 |              |  |
| ļ          |                           |                     |                                           |                 |              |  |
|            |                           |                     | +                                         |                 |              |  |
|            |                           |                     |                                           | <del></del>     |              |  |
|            |                           |                     | 1                                         | +               |              |  |
|            |                           |                     |                                           |                 |              |  |
|            |                           |                     |                                           |                 |              |  |

| 0,6 1,4 m                                                                                                                                                                                                                                                                                                                                                                                                                                            | 45,8      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| m Zone Zustand                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bemerkung |
| 0,6 Beginn Rohr 1,0 Übergang zum Wellschlauch 3,0 Muffe mit 90° Knick 7,0 Muffe 14,0 Kondensat  20,0 Muffe 34,0 Muffe |           |

| Kamer                     | abefahrun                                             | g GS III/2          |                                   |                                                                                               | 15.07.                         | 2021       | GB III / 2.9 D                                         |
|---------------------------|-------------------------------------------------------|---------------------|-----------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------|------------|--------------------------------------------------------|
|                           |                                                       |                     |                                   |                                                                                               |                                | The same   |                                                        |
|                           | 0,4                                                   |                     |                                   | 13,0 m                                                                                        |                                |            | 34,1 m                                                 |
| m                         |                                                       | Zone                |                                   | Zustand                                                                                       |                                |            | Bemerkung                                              |
| 0,4<br>0,9<br>3,0<br>13,0 | Beginn Rohr<br>Übergang Wel<br>Muffe mit 90°<br>Muffe | llschlauch<br>Knick | etwas sta<br>Sicht sta<br>schaumi | ngen mit Bläschenbild<br>ärkere Wassereinsta<br>rk beeinträchtigt dur<br>g klebrige Ablagerun | uung bis 2,2<br>ch Anhaftunger |            | nit Ablagerungen vermischt<br>chwert durch Feuchigkeit |
| 26,0<br>34,1              | Muffe                                                 |                     |                                   | och zu erkennen                                                                               | n Ablagerunger                 | Sicht erso | chwert durch Feuchigkeit                               |
|                           |                                                       |                     |                                   |                                                                                               |                                |            |                                                        |
|                           |                                                       |                     |                                   |                                                                                               |                                |            |                                                        |